Embedding(嵌入)是什么?从文本到Embedding的流程是怎样的?

1、什么是Embedding?

Embedding(嵌入)是指把文本(也可能包括图像、视频等其他模态数据)转成能表达语义信息的浮点数向量,向量之间的数学距离可以反映对应文本之间的语义相关性。

2、从文本到Embedding的流程

Embedding的生成方式,主要分两种情况:

1)大模型推理中的Embedding(Token级)

文本先通过分词器拆分成最小语言单位token,例如:"unbelievable"→["un","believ","able"]

接着查询词表,将每个token被映射成一个数字编号,比如:"un"→1087。

根据编号查询Embedding矩阵,快速取出对应的浮点数向量,例如:"un"→[0.24,-0.31,0.88,..., 0.05]。

生成Token级的Embedding,是大模型理解输入文本的第一步。

2)独立使用的Embedding(句子/文档级)

如果需要表示一整句或一段文本(比如在RAG中检索),就不能只查表了。

常见做法是:将文本输入到一个专门训练好的Embedding模型(如 Sentence-BERT、M3E),通过推理生成一个完整的句子或文档级向量。

这种Embedding包含了更丰富的上下文信息,适合检索、相似性判断等场景。

3、Embedding的本质:语义可被数字表示

在模型训练中,发现文本的语义可以被"压缩"成一组数字向量,且向量之间的距离和方向,能自然反映文本间的语义关系。

比如

"猫"和"狗"对应向量的数学距离很近,代表它们语义接近(都是动物)

"房子"和"你好"对应向量的数学距离很远,表示它们语义无关

模型甚至可以学到:king-man+woman≈queen 这样的语义数学关系

这些规律并非人为设定,而是模型通过海量数据自动学习到的。

4、Embedding的应用场景

Embedding不仅用于大模型推理时将输入文本编码为语义向量,也广泛应用于实际场景,例如:

检索增强生成(RAG) :将文档或知识内容转化为向量存储,推理时通过向量检索相关片段,扩展模型上下文,提升回答准确性。

相似性判断:比较文本向量的距离或角度,判断语义一致性或检测重复内容。

文本聚类与分析:将文本编码为向量后进行聚类,挖掘内容结构和主题分布,如K-means聚类。

5、常见问题答疑

Q:Token 和 Embedding 是一回事吗?

A:不是。Token是编号(离散的ID),Embedding是承载语义的连续向量,二者功能完全不同。

Q:Embedding 是模型训练出来的吗?

A:是的。Embedding 向量是模型通过海量语料学习到的语义表示,而不是手动设定或硬编码的。

Q:Embedding 向量长度固定吗?为什么?

A:在同一个模型中,所有Embedding向量的长度是固定的(例如:512维、768维),这样可以统一模型内部的计算结构,方便批量处理和矩阵运算。不同模型之间的向量长度则可能不同。

AI大模型系统化学习入口

相关推荐
CodeCraft Studio2 小时前
Aspose.Words for .NET 25.7:支持自建大语言模型(LLM),实现更安全灵活的AI文档处理功能
人工智能·ai·语言模型·llm·.net·智能文档处理·aspose.word
ZHOU_WUYI3 小时前
FastVLM-0.5B 模型解析
人工智能·llm
Wilber的技术分享3 小时前
【大模型实战笔记 1】Prompt-Tuning方法
人工智能·笔记·机器学习·大模型·llm·prompt
蛋先生DX9 小时前
零压力了解 LoRA 微调原理
人工智能·llm
ZHOU_WUYI10 小时前
门控MLP(Qwen3MLP)与稀疏混合专家(Qwen3MoeSparseMoeBlock)模块解析
人工智能·llm
boonya16 小时前
国内外开源大模型 LLM整理
开源·大模型·llm·大语言模型
文心快码BaiduComate1 天前
文心快码已支持Kimi-K2-0905模型
llm·ai编程
大熊猫侯佩1 天前
矩阵异变:代号 “AFM” 的 “温柔反叛者”—— 一场穿梭于骇客矩阵的苹果 AI 探秘
llm·ai编程·apple
数据智能老司机1 天前
AI Agents 实战——多智能体应用
llm·aigc·agent
聚客AI1 天前
👀10分钟搞懂RAG架构:离线索引+在线检索的闭环秘密
人工智能·llm·agent