TechGPT2部署

1.环境

conda create -n techgpt python=3.10

conda activate techgpt

2.安装依赖

pip install transformers

pip install torch

pip install accelerate

3.克隆项目

开一下学术加速,然后克隆。

source /etc/network_turbo

git clone https://github.com/neukg/TechGPT-2.0.git

4.登录 Hugging Face 账户

pip install huggingface_hub

huggingface-cli login

5.下载模型到本地

python 复制代码
from huggingface_hub import snapshot_download

snapshot_download(
    repo_id="neukg/TechGPT-2.0-Qwen1.5-7b",
    local_dir="/root/autodl-tmp/TechGPT-2.0-Qwen1.5-7b",
    resume_download=True,
    local_dir_use_symlinks=False
)

6.运行

python 复制代码
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch

# ✅ Qwen 的系统提示语(支持中英)
DEFAULT_SYSTEM_PROMPT = "You are a helpful assistant."

# ✅ Qwen 默认不使用 Alpaca 的 [INST] 模板,直接使用自然语言 prompt
example = "请把下列标题扩写成摘要, 不少于100字: 基于视觉语言多模态的实体关系联合抽取的研究。"

# ✅ 模型路径(改为你的 Qwen 模型保存目录)
ckpt_path = "/root/autodl-tmp/TechGPT-2.0-Qwen1.5-7b"

# ✅ 加载模型与 tokenizer(注意 trust_remote_code)
tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    ckpt_path,
    device_map="auto",                  # 自动选择 GPU
    torch_dtype=torch.float16,
    trust_remote_code=True
)
model.eval()

# ✅ Qwen 推荐使用的生成配置
generation_config = GenerationConfig(
    temperature=0.8,
    top_p=0.8,
    top_k=40,
    num_beams=1,
    do_sample=True,
    eos_token_id=tokenizer.eos_token_id,
    pad_token_id=tokenizer.pad_token_id,
    max_new_tokens=256,
)

# ✅ 构造输入
example = "请把下列标题扩写成摘要, 不少于100字: 基于视觉语言多模态的实体关系联合抽取的研究。"

prompt = f"<|im_start|>system\n{DEFAULT_SYSTEM_PROMPT}<|im_end|>\n<|im_start|>user\n{example}<|im_end|>\n<|im_start|>assistant\n"

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)


# ✅ 生成回复
with torch.no_grad():
    generation_output = model.generate(
        **inputs,
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True
    )
    output = generation_output.sequences[0]
    output_text = tokenizer.decode(output, skip_special_tokens=True)

# ✅ 打印结果
print("\n🧠 模型回复:")
print(output_text)

7.效果

相关推荐
子午14 分钟前
【食物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
曾经的三心草15 分钟前
基于正倒排索引的Java文档搜索引擎2-实现Index类
java·python·搜索引擎
Dev7z18 分钟前
基于深度学习和图像处理的药丸计数与分类系统研究
图像处理·人工智能·深度学习
疏狂难除23 分钟前
尝试rust与python的混合编程(二)
数据库·python·rust
n***333528 分钟前
linux redis简单操作
linux·运维·redis
h***593332 分钟前
使用Canal将MySQL数据同步到ES(Linux)
linux·mysql·elasticsearch
Mxsoft61942 分钟前
某次联邦学习训练模型不准,发现协议转换字段映射错,手动校验救场!
人工智能
xu_yule1 小时前
网络和Linux网络-5(应用层)HTTP协议(方法+报头+状态码)
linux·网络·网络协议·http
shayudiandian1 小时前
用PyTorch训练一个猫狗分类器
人工智能·pytorch·深度学习
这儿有一堆花1 小时前
把 AI 装进终端:Gemini CLI 上手体验与核心功能解析
人工智能·ai·ai编程