昇思学习营-Deepseek-r1-distill-qwen-1.5b模型开发与适配课程内容和学习心得

Deepseek-r1-distill-qwen-1.5b介绍

Deepseek-v3和r1的版本通过8张141张nvidia h200 gpu进行训练,训练和运行成本高,为节约成本,deepseek推出蒸馏板模型,基于r1版本的模型生成的高质量推理数据,在小模型上进行监督微调(sft,无强化学习或者偏好对齐训练阶段),具体过程如下:

  1. 选用 Llama 3.1/3.3 和 Qwen 2.5 的 6 个开源模型
  2. 用 R1 生成 80 万条高质量推理数据
  3. 基于这些数据进行监督微调(SFT,无 RL 阶段)

DeepSeek-R1-Distill-Qwen-1.5B在香橙派上的开发与适配

其中由于香橙派的板有8-12T和20T不同的算力版本,因此价格也是不同的,部署及开发人员根据自身的情况选择合适的板子进行开发。

详细的配置教学可以扫下面的二维码;

香橙派板子调试前的环境准备工作

版本查看:

香橙派板子的Mindspore版本查看:

通过mindspore官网的命令来升级

Mindnlp版本:

香橙派板子模型及网络调试(查看当前板子是否能够支持模型的运行)

模型调试命令如下:

MindSpore NLP套件中有针对模型的ut测试,可通过pytest来测试模型在香橙派的训练和推理,并进行问题定位和调试

设置环境变量:

export RUN_SLOW=True

执行命令:

Pytest -v -s tests/transformers/models/qwen2/test_modeling_qwen2.py

由于MindSpore动态图下框架存在多线程异步⾏为,所以会出现python调⽤栈不准确的场景,为了精准定位在test_modeling_qwen2.py脚本中import mindspore之后的位置,加入如下代码,重新跑pytest,查看具体的报错位置并根据报错信息修改

mindspore.set_context(pynative_synchronize=True)

对香橙派板子调试模型时报错的一些处理案例

针对算子缺失的处理方式及在实际工程文件中修改对应代码

针对损失函数报错的处理方式

针对香橙派上Tensor索引/切片报错的处理方式

学习心得:

  1. 对于香橙派上面训练和运行的deepseek蒸馏版本模型的方式有初步的了解。
  2. 对香橙派板子调试前的部署流程有初步认识。
  3. 对香橙派板子上面部署及测试mindspore有初步了解,及对部分异常及错误处理有明确认识。
相关推荐
敲代码的嘎仔16 小时前
JavaWeb零基础学习Day2——JS & Vue
java·开发语言·前端·javascript·数据结构·学习·算法
Amy_au17 小时前
AWS Lambda 学习笔
学习·云计算·aws
chennn1217 小时前
c++相关学习
开发语言·c++·学习
Gorgous—l19 小时前
数据结构算法学习:LeetCode热题100-矩阵篇(矩阵置零、螺旋矩阵、旋转图像、搜索二维矩阵 II)
数据结构·学习·算法
eggcode19 小时前
Vue前端开发学习的简单记录
vue.js·学习
你也渴望鸡哥的力量么19 小时前
爬虫学习笔记
笔记·爬虫·学习
日更嵌入式的打工仔19 小时前
InitLWIP() 初始化
笔记·嵌入式硬件·学习
QAQ小菜鸟19 小时前
AutoCAD如何将指定窗口导出成PDF?
学习
澄澈i20 小时前
CMake学习篇[3]---CMake进阶+嵌套CMakeLists+多层级关系
c++·学习·cmake
Camellia031120 小时前
为第二次考核的电控学习
学习