五度标调法调域统计分析工具

五度标调法调域统计分析工具

"""

tone_statistics_analyzer.py

五度标调法调域统计分析工具

增强版:包含数据验证、统计指标计算和加权支持

"""

import math

from typing import List, Optional

class ToneStatisticsAnalyzer:

"""

五度标调法调域统计分析工具

提供调值中值、调类中值、调系中值计算,以及调域范围、标准差等统计指标

"""

复制代码
MIN_TONE_LEVEL = 1
MAX_TONE_LEVEL = 5

@staticmethod
def validate_pitch_levels(pitch_levels: List[int]) -> None:
    """
    验证五度值是否在有效范围内(1-5)
    :param pitch_levels: 调值列表
    :raises ValueError: 如果调值不在1-5范围内
    """
    if not pitch_levels:
        raise ValueError("调值列表不能为空")

    for level in pitch_levels:
        if not (ToneStatisticsAnalyzer.MIN_TONE_LEVEL <= level <= ToneStatisticsAnalyzer.MAX_TONE_LEVEL):
            raise ValueError(
                f"五度值必须在{ToneStatisticsAnalyzer.MIN_TONE_LEVEL}-{ToneStatisticsAnalyzer.MAX_TONE_LEVEL}之间,当前值: {level}")

@staticmethod
def calculate_tone_value_stats(pitch_levels: List[int], weights: Optional[List[float]] = None) -> dict:
    """
    计算单个调值的统计指标(中值、范围、标准差)
    :param pitch_levels: 调值列表
    :param weights: 可选权重列表(用于加权计算)
    :return: 包含统计指标的字典
    """
    ToneStatisticsAnalyzer.validate_pitch_levels(pitch_levels)

    if weights and len(weights) != len(pitch_levels):
        raise ValueError("权重列表长度必须与调值列表相同")

    n = len(pitch_levels)

    if weights:
        # 加权计算
        weighted_sum = sum(t * w for t, w in zip(pitch_levels, weights))
        total_weight = sum(weights)
        mean = weighted_sum / total_weight

        # 加权标准差
        variance = sum(w * (t - mean)**2 for t,
                       w in zip(pitch_levels, weights)) / total_weight
    else:
        # 普通计算
        mean = sum(pitch_levels) / n
        variance = sum((t - mean)**2 for t in pitch_levels) / n

    return {
        'median': mean,
        'range': max(pitch_levels) - min(pitch_levels),
        'std_dev': math.sqrt(variance),
        'min': min(pitch_levels),
        'max': max(pitch_levels)
    }

@staticmethod
def calculate_tone_category_stats(tone_values_stats: List[dict], weights: Optional[List[float]] = None) -> dict:
    """
    计算调类统计指标
    :param tone_values_stats: 该调类的多个调值统计指标列表
    :param weights: 可选权重列表
    :return: 调类统计指标
    """
    if not tone_values_stats:
        raise ValueError("调值统计指标列表不能为空")

    medians = [stat['median'] for stat in tone_values_stats]

    if weights:
        if len(weights) != len(medians):
            raise ValueError("权重列表长度必须与调值统计指标列表相同")

        weighted_sum = sum(m * w for m, w in zip(medians, weights))
        total_weight = sum(weights)
        category_median = weighted_sum / total_weight
    else:
        category_median = sum(medians) / len(medians)

    return {
        'median': category_median,
        'range': max(medians) - min(medians),
        'std_dev': math.sqrt(sum((m - category_median)**2 for m in medians) / len(medians))
    }

@staticmethod
def calculate_tone_system_stats(category_stats: List[dict]) -> dict:
    """
    计算调系统计指标
    :param category_stats: 各调类统计指标列表
    :return: 调系统计指标
    """
    if not category_stats:
        raise ValueError("调类统计指标列表不能为空")

    medians = [stat['median'] for stat in category_stats]
    system_median = sum(medians) / len(medians)

    return {
        'median': system_median,
        'range': max(medians) - min(medians),
        'std_dev': math.sqrt(sum((m - system_median)**2 for m in medians) / len(medians))
    }

@staticmethod
def calculate_variation_coefficient(values):
    """计算变异系数(标准差/均值)评估离散程度"""
    mean = sum(values) / len(values)
    std_dev = (sum((x - mean)**2 for x in values) / len(values))**0.5
    return std_dev / mean

# 应用示例
shangsheng_vc = calculate_variation_coefficient(
    [1.33, 4.00, 2.33])  # 上声变异系数
qusheng_vc = calculate_variation_coefficient([3.33, 4.00])  # 去声变异系数

示例使用

if name == "main ":

print("五度标调法调域统计分析示例\n")

复制代码
# 1. 计算各调值统计指标
yinping = ToneStatisticsAnalyzer.calculate_tone_value_stats([5, 5, 5])
yangping = ToneStatisticsAnalyzer.calculate_tone_value_stats([3, 4, 5])
shangsheng1 = ToneStatisticsAnalyzer.calculate_tone_value_stats([2, 1, 1])
shangsheng2 = ToneStatisticsAnalyzer.calculate_tone_value_stats([3, 4, 5])
shangsheng3 = ToneStatisticsAnalyzer.calculate_tone_value_stats([2, 1, 4])
qusheng1 = ToneStatisticsAnalyzer.calculate_tone_value_stats([5, 4, 1])
qusheng2 = ToneStatisticsAnalyzer.calculate_tone_value_stats([5, 4, 3])

print("=== 调值统计 ===")
print(
    f"阴平[555]: 中值={yinping['median']:.2f}, 范围={yinping['range']}, 标准差={yinping['std_dev']:.2f}")
print(
    f"阳平[345]: 中值={yangping['median']:.2f}, 范围={yangping['range']}, 标准差={yangping['std_dev']:.2f}")
print(
    f"上声1[211]: 中值={shangsheng1['median']:.2f}, 范围={shangsheng1['range']}, 标准差={shangsheng1['std_dev']:.2f}")
print(
    f"上声2[345]: 中值={shangsheng2['median']:.2f}, 范围={shangsheng2['range']}, 标准差={shangsheng2['std_dev']:.2f}")
print(
    f"上声3[214]: 中值={shangsheng3['median']:.2f}, 范围={shangsheng3['range']}, 标准差={shangsheng3['std_dev']:.2f}")
print(
    f"去声1[541]: 中值={qusheng1['median']:.2f}, 范围={qusheng1['range']}, 标准差={qusheng1['std_dev']:.2f}")
print(
    f"去声2[543]: 中值={qusheng2['median']:.2f}, 范围={qusheng2['range']}, 标准差={qusheng2['std_dev']:.2f}")

# 2. 计算各调类统计指标
yinping_stats = ToneStatisticsAnalyzer.calculate_tone_category_stats([
                                                                     yinping])
yangping_stats = ToneStatisticsAnalyzer.calculate_tone_category_stats([
                                                                      yangping])
shangsheng_stats = ToneStatisticsAnalyzer.calculate_tone_category_stats(
    [shangsheng1, shangsheng2, shangsheng3])
qusheng_stats = ToneStatisticsAnalyzer.calculate_tone_category_stats([
                                                                     qusheng1, qusheng2])

print("\n=== 调类统计 ===")
print(
    f"阴平: 中值={yinping_stats['median']:.2f}, 范围={yinping_stats['range']:.2f}, 标准差={yinping_stats['std_dev']:.2f}")
print(
    f"阳平: 中值={yangping_stats['median']:.2f}, 范围={yangping_stats['range']:.2f}, 标准差={yangping_stats['std_dev']:.2f}")
print(
    f"上声: 中值={shangsheng_stats['median']:.2f}, 范围={shangsheng_stats['range']:.2f}, 标准差={shangsheng_stats['std_dev']:.2f}")
print(
    f"去声: 中值={qusheng_stats['median']:.2f}, 范围={qusheng_stats['range']:.2f}, 标准差={qusheng_stats['std_dev']:.2f}")

# 3. 计算调系统计指标
system_stats = ToneStatisticsAnalyzer.calculate_tone_system_stats([
    yinping_stats, yangping_stats, shangsheng_stats, qusheng_stats
])

print("\n=== 调系统计 ===")
print(f"调系中值: {system_stats['median']:.2f}")
print(f"调域范围: {system_stats['range']:.2f}")
print(f"标准差: {system_stats['std_dev']:.2f}")
相关推荐
迈火21 小时前
PuLID_ComfyUI:ComfyUI中的图像生成强化插件
开发语言·人工智能·python·深度学习·计算机视觉·stable diffusion·语音识别
Chunyyyen1 天前
【第十六周】自然语言处理的学习笔记01
笔记·学习·自然语言处理
丁学文武1 天前
大模型原理与实践:第一章-NLP基础概念完整指南_第2部分-各种任务(实体识别、关系抽取、文本摘要、机器翻译、自动问答)
自然语言处理·nlp·机器翻译·文本摘要·实体识别·大模型应用·自动问答
人工智能技术派1 天前
Whisper推理源码解读
人工智能·语言模型·whisper·语音识别
wa的一声哭了1 天前
Stanford CS336 assignment1 | Transformer Language Model Architecture
人工智能·pytorch·python·深度学习·神经网络·语言模型·transformer
会开花的二叉树1 天前
C++分布式语音识别服务实践
c++·分布式·语音识别
wa的一声哭了1 天前
Deep Learning Optimizer | Adam、AdamW
人工智能·深度学习·神经网络·机器学习·自然语言处理·transformer·pytest
qq_314009832 天前
大模型之用LLaMA-Factory微调Deepseek-r1-8b模型实践
人工智能·语言模型
丁学文武2 天前
大模型原理与实践:第三章-预训练语言模型详解_第2部分-Encoder-Decoder-T5
人工智能·语言模型·自然语言处理·大模型·t5·encoder-decoder
skywalk81632 天前
调试parlant的大模型配置,最终自己动手写了g4f的模块挂载
网络·人工智能·语言模型·tiktoken