五度标调法调域统计分析工具

五度标调法调域统计分析工具

"""

tone_statistics_analyzer.py

五度标调法调域统计分析工具

增强版:包含数据验证、统计指标计算和加权支持

"""

import math

from typing import List, Optional

class ToneStatisticsAnalyzer:

"""

五度标调法调域统计分析工具

提供调值中值、调类中值、调系中值计算,以及调域范围、标准差等统计指标

"""

复制代码
MIN_TONE_LEVEL = 1
MAX_TONE_LEVEL = 5

@staticmethod
def validate_pitch_levels(pitch_levels: List[int]) -> None:
    """
    验证五度值是否在有效范围内(1-5)
    :param pitch_levels: 调值列表
    :raises ValueError: 如果调值不在1-5范围内
    """
    if not pitch_levels:
        raise ValueError("调值列表不能为空")

    for level in pitch_levels:
        if not (ToneStatisticsAnalyzer.MIN_TONE_LEVEL <= level <= ToneStatisticsAnalyzer.MAX_TONE_LEVEL):
            raise ValueError(
                f"五度值必须在{ToneStatisticsAnalyzer.MIN_TONE_LEVEL}-{ToneStatisticsAnalyzer.MAX_TONE_LEVEL}之间,当前值: {level}")

@staticmethod
def calculate_tone_value_stats(pitch_levels: List[int], weights: Optional[List[float]] = None) -> dict:
    """
    计算单个调值的统计指标(中值、范围、标准差)
    :param pitch_levels: 调值列表
    :param weights: 可选权重列表(用于加权计算)
    :return: 包含统计指标的字典
    """
    ToneStatisticsAnalyzer.validate_pitch_levels(pitch_levels)

    if weights and len(weights) != len(pitch_levels):
        raise ValueError("权重列表长度必须与调值列表相同")

    n = len(pitch_levels)

    if weights:
        # 加权计算
        weighted_sum = sum(t * w for t, w in zip(pitch_levels, weights))
        total_weight = sum(weights)
        mean = weighted_sum / total_weight

        # 加权标准差
        variance = sum(w * (t - mean)**2 for t,
                       w in zip(pitch_levels, weights)) / total_weight
    else:
        # 普通计算
        mean = sum(pitch_levels) / n
        variance = sum((t - mean)**2 for t in pitch_levels) / n

    return {
        'median': mean,
        'range': max(pitch_levels) - min(pitch_levels),
        'std_dev': math.sqrt(variance),
        'min': min(pitch_levels),
        'max': max(pitch_levels)
    }

@staticmethod
def calculate_tone_category_stats(tone_values_stats: List[dict], weights: Optional[List[float]] = None) -> dict:
    """
    计算调类统计指标
    :param tone_values_stats: 该调类的多个调值统计指标列表
    :param weights: 可选权重列表
    :return: 调类统计指标
    """
    if not tone_values_stats:
        raise ValueError("调值统计指标列表不能为空")

    medians = [stat['median'] for stat in tone_values_stats]

    if weights:
        if len(weights) != len(medians):
            raise ValueError("权重列表长度必须与调值统计指标列表相同")

        weighted_sum = sum(m * w for m, w in zip(medians, weights))
        total_weight = sum(weights)
        category_median = weighted_sum / total_weight
    else:
        category_median = sum(medians) / len(medians)

    return {
        'median': category_median,
        'range': max(medians) - min(medians),
        'std_dev': math.sqrt(sum((m - category_median)**2 for m in medians) / len(medians))
    }

@staticmethod
def calculate_tone_system_stats(category_stats: List[dict]) -> dict:
    """
    计算调系统计指标
    :param category_stats: 各调类统计指标列表
    :return: 调系统计指标
    """
    if not category_stats:
        raise ValueError("调类统计指标列表不能为空")

    medians = [stat['median'] for stat in category_stats]
    system_median = sum(medians) / len(medians)

    return {
        'median': system_median,
        'range': max(medians) - min(medians),
        'std_dev': math.sqrt(sum((m - system_median)**2 for m in medians) / len(medians))
    }

@staticmethod
def calculate_variation_coefficient(values):
    """计算变异系数(标准差/均值)评估离散程度"""
    mean = sum(values) / len(values)
    std_dev = (sum((x - mean)**2 for x in values) / len(values))**0.5
    return std_dev / mean

# 应用示例
shangsheng_vc = calculate_variation_coefficient(
    [1.33, 4.00, 2.33])  # 上声变异系数
qusheng_vc = calculate_variation_coefficient([3.33, 4.00])  # 去声变异系数

示例使用

if name == "main ":

print("五度标调法调域统计分析示例\n")

复制代码
# 1. 计算各调值统计指标
yinping = ToneStatisticsAnalyzer.calculate_tone_value_stats([5, 5, 5])
yangping = ToneStatisticsAnalyzer.calculate_tone_value_stats([3, 4, 5])
shangsheng1 = ToneStatisticsAnalyzer.calculate_tone_value_stats([2, 1, 1])
shangsheng2 = ToneStatisticsAnalyzer.calculate_tone_value_stats([3, 4, 5])
shangsheng3 = ToneStatisticsAnalyzer.calculate_tone_value_stats([2, 1, 4])
qusheng1 = ToneStatisticsAnalyzer.calculate_tone_value_stats([5, 4, 1])
qusheng2 = ToneStatisticsAnalyzer.calculate_tone_value_stats([5, 4, 3])

print("=== 调值统计 ===")
print(
    f"阴平[555]: 中值={yinping['median']:.2f}, 范围={yinping['range']}, 标准差={yinping['std_dev']:.2f}")
print(
    f"阳平[345]: 中值={yangping['median']:.2f}, 范围={yangping['range']}, 标准差={yangping['std_dev']:.2f}")
print(
    f"上声1[211]: 中值={shangsheng1['median']:.2f}, 范围={shangsheng1['range']}, 标准差={shangsheng1['std_dev']:.2f}")
print(
    f"上声2[345]: 中值={shangsheng2['median']:.2f}, 范围={shangsheng2['range']}, 标准差={shangsheng2['std_dev']:.2f}")
print(
    f"上声3[214]: 中值={shangsheng3['median']:.2f}, 范围={shangsheng3['range']}, 标准差={shangsheng3['std_dev']:.2f}")
print(
    f"去声1[541]: 中值={qusheng1['median']:.2f}, 范围={qusheng1['range']}, 标准差={qusheng1['std_dev']:.2f}")
print(
    f"去声2[543]: 中值={qusheng2['median']:.2f}, 范围={qusheng2['range']}, 标准差={qusheng2['std_dev']:.2f}")

# 2. 计算各调类统计指标
yinping_stats = ToneStatisticsAnalyzer.calculate_tone_category_stats([
                                                                     yinping])
yangping_stats = ToneStatisticsAnalyzer.calculate_tone_category_stats([
                                                                      yangping])
shangsheng_stats = ToneStatisticsAnalyzer.calculate_tone_category_stats(
    [shangsheng1, shangsheng2, shangsheng3])
qusheng_stats = ToneStatisticsAnalyzer.calculate_tone_category_stats([
                                                                     qusheng1, qusheng2])

print("\n=== 调类统计 ===")
print(
    f"阴平: 中值={yinping_stats['median']:.2f}, 范围={yinping_stats['range']:.2f}, 标准差={yinping_stats['std_dev']:.2f}")
print(
    f"阳平: 中值={yangping_stats['median']:.2f}, 范围={yangping_stats['range']:.2f}, 标准差={yangping_stats['std_dev']:.2f}")
print(
    f"上声: 中值={shangsheng_stats['median']:.2f}, 范围={shangsheng_stats['range']:.2f}, 标准差={shangsheng_stats['std_dev']:.2f}")
print(
    f"去声: 中值={qusheng_stats['median']:.2f}, 范围={qusheng_stats['range']:.2f}, 标准差={qusheng_stats['std_dev']:.2f}")

# 3. 计算调系统计指标
system_stats = ToneStatisticsAnalyzer.calculate_tone_system_stats([
    yinping_stats, yangping_stats, shangsheng_stats, qusheng_stats
])

print("\n=== 调系统计 ===")
print(f"调系中值: {system_stats['median']:.2f}")
print(f"调域范围: {system_stats['range']:.2f}")
print(f"标准差: {system_stats['std_dev']:.2f}")
相关推荐
小oo呆4 小时前
【自然语言处理与大模型】BERTopic主题建模
人工智能·自然语言处理
2501_941225684 小时前
人工智能与自然语言处理技术在智能客服与用户体验优化中的创新应用研究
人工智能·自然语言处理·ux
ModestCoder_4 小时前
Tokenization的演进:从NLP基石到多模态AI的“通用翻译器”
开发语言·人工智能·自然语言处理·机器人·具身智能
聚梦小课堂5 小时前
2025.11.18 AI快讯
人工智能·语言模型·新闻资讯·ai大事件
冻感糕人~5 小时前
Agent框架协议“三部曲”:MCP、A2A与AG-UI的协同演进
java·人工智能·学习·语言模型·大模型·agent·大模型学习
MARS_AI_13 小时前
云蝠智能 VoiceAgent 2.0:全栈语音交互能力升级
人工智能·自然语言处理·交互·信息与通信·agi
美人鱼战士爱学习15 小时前
2025 Large language models for intelligent RDF knowledge graph construction
人工智能·语言模型·知识图谱
汗流浃背了吧,老弟!17 小时前
预训练语言模型(Pre-trained Language Model, PLM)介绍
深度学习·语言模型·自然语言处理
余俊晖1 天前
英伟达开源多模态视觉语言模型-Nemotron Nano V2 VL模型架构、训练方法、训练数据
人工智能·算法·语言模型·自然语言处理·多模态
盼小辉丶1 天前
Transformer实战(26)——通过领域适应提升Transformer模型性能
深度学习·语言模型·bert·transformer