cpp
复制代码
#ifndef IMAGE_SCALE_HPP
#define IMAGE_SCALE_HPP
#include <vector>
#include <cstdint>
#include <utility> // for std::pair
#include <algorithm>
#include <string>
enum class ScaleMethod {
Nearest, // 最近邻插值
Bilinear, // 双线性插值
Bicubic, // 双三次插值
Pyramid // 金字塔降采样
};
struct Image {
std::vector<uint8_t> data;
int width = 0;
int height = 0;
int channels = 0;
float dpi = 0.0f;
Image(int w, int h, int c, float d = 0.0f)
: width(w), height(h), channels(c), dpi(d), data(w* h* c) {
}
// 安全获取像素(带边界检查)
uint8_t get_pixel(int x, int y, int c) const {
x = std::clamp(x, 0, width - 1);
y = std::clamp(y, 0, height - 1);
return data[(y * width + x) * channels + c];
}
};
Image scale_image(const Image& src,
std::pair<int, int> dst_size,
float target_dpi ,
ScaleMethod method );
/**
* 从 JPEG 文件读取图像数据(使用 TurboJPEG)
* @param path JPEG 文件路径
* @param dst_dpi 目标DPI(若<=0 则使用文件默认DPI)
* @return Image 结构(数据自动管理)
* @throws std::runtime_error 读取失败时抛出
*/
Image read_jpeg(const std::string& path);
/**
* 将 Image 编码为 JPEG 字节流
* @param img 输入图像(支持 RGB/RGBA)
* @param quality 压缩质量(1-100)
* @return JPEG 二进制数据
*/
std::vector<uint8_t> encode_jpeg(const Image& img, int quality );
/**
* 将 JPEG 数据保存到文件
* @param path 输出路径
* @param img 输入图像
* @param quality 压缩质量(1-100)
*/
void save_jpeg(const std::string& path, const Image& img, int quality );
#endif // IMAGE_SCALE_HPP
cpp
复制代码
#include "image_scale.hpp"
#include <cmath>
#include <algorithm>
#include <stdexcept>
namespace {
// 双三次插值核
float bicubic_kernel(float x, float B = 0.0f, float C = 0.5f) {
x = std::abs(x);
if (x < 1.0f) {
return ((12 - 9 * B - 6 * C) * x * x * x + (-18 + 12 * B + 6 * C) * x * x + (6 - 2 * B)) / 6.0f;
}
else if (x < 2.0f) {
return ((-B - 6 * C) * x * x * x + (6 * B + 30 * C) * x * x + (-12 * B - 48 * C) * x + (8 * B + 24 * C)) / 6.0f;
}
return 0.0f;
}
// 单次降采样(双线性)
Image downscale_half(const Image& src) {
if (src.width <= 1 || src.height <= 1)
throw std::invalid_argument("Image too small for downscaling");
Image dst(src.width / 2, src.height / 2, src.channels, src.dpi / 2.0f);
for (int y = 0; y < dst.height; ++y) {
for (int x = 0; x < dst.width; ++x) {
for (int c = 0; c < src.channels; ++c) {
// 2x2 区域均值
float p = (
src.get_pixel(x * 2, y * 2, c) +
src.get_pixel(x * 2 + 1, y * 2, c) +
src.get_pixel(x * 2, y * 2 + 1, c) +
src.get_pixel(x * 2 + 1, y * 2 + 1, c)
) / 4.0f;
dst.data[(y * dst.width + x) * src.channels + c] = static_cast<uint8_t>(p);
}
}
}
return dst;
}
// 计算基于 DPI 的目标尺寸
std::pair<int, int> calculate_target_size(const Image& src, float target_dpi) {
if (target_dpi <= 0 || src.dpi <= 0)
return { src.width, src.height }; // 忽略 DPI 计算
float scale = target_dpi / src.dpi;
return {
static_cast<int>(std::round(src.width * scale)),
static_cast<int>(std::round(src.height * scale))
};
}
}
Image scale_image(const Image& src,
std::pair<int, int> dst_size,
float target_dpi,
ScaleMethod method)
{
auto [dst_width, dst_height] = dst_size;
// 1. 根据 DPI 调整目标尺寸
if (target_dpi > 0) {
auto dpi_size = calculate_target_size(src, target_dpi);
dst_width = dpi_size.first;
dst_height = dpi_size.second;
}
// 2. 金字塔降采样
if (method == ScaleMethod::Pyramid &&
(dst_width < src.width || dst_height < src.height))
{
Image current = src;
// 逐级减半直到接近目标尺寸
while (current.width / 2 >= dst_width &&
current.height / 2 >= dst_height) {
current = downscale_half(current);
}
// 最终精确缩放
if (current.width != dst_width || current.height != dst_height) {
return scale_image(current, { dst_width, dst_height }, -1.0f, ScaleMethod::Bilinear);
}
return current;
}
// 3. 常规缩放
Image dst(dst_width, dst_height, src.channels,
(target_dpi > 0) ? target_dpi : src.dpi * (static_cast<float>(dst_width) / src.width));
const float x_ratio = static_cast<float>(src.width - 1) / dst_width;
const float y_ratio = static_cast<float>(src.height - 1) / dst_height;
for (int y = 0; y < dst_height; ++y) {
for (int x = 0; x < dst_width; ++x) {
const float src_x = x * x_ratio;
const float src_y = y * y_ratio;
for (int c = 0; c < src.channels; ++c) {
float pixel = 0.0f;
switch (method) {
case ScaleMethod::Nearest: {
int nx = static_cast<int>(src_x + 0.5f);
int ny = static_cast<int>(src_y + 0.5f);
pixel = src.get_pixel(nx, ny, c);
break;
}
case ScaleMethod::Bilinear: {
int x0 = static_cast<int>(src_x);
int y0 = static_cast<int>(src_y);
float dx = src_x - x0;
float dy = src_y - y0;
pixel =
src.get_pixel(x0, y0, c) * (1 - dx) * (1 - dy) +
src.get_pixel(x0 + 1, y0, c) * dx * (1 - dy) +
src.get_pixel(x0, y0 + 1, c) * (1 - dx) * dy +
src.get_pixel(x0 + 1, y0 + 1, c) * dx * dy;
break;
}
case ScaleMethod::Bicubic: {
int x0 = static_cast<int>(src_x) - 1;
int y0 = static_cast<int>(src_y) - 1;
float sum = 0.0f, weight_sum = 0.0f;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
float wx = bicubic_kernel(src_x - (x0 + i));
float wy = bicubic_kernel(src_y - (y0 + j));
float w = wx * wy;
sum += src.get_pixel(x0 + i, y0 + j, c) * w;
weight_sum += w;
}
}
pixel = sum / (weight_sum + 1e-8f);
break;
}
default:
throw std::invalid_argument("Unsupported scale method");
}
dst.data[(y * dst.width + x) * src.channels + c] =
static_cast<uint8_t>(std::clamp(pixel, 0.0f, 255.0f));
}
}
}
return dst;
}
//#include "jpeg_reader.hpp"
#include <turbojpeg.h>
#include <fstream>
#include <vector>
#include <memory> // std::unique_ptr
// 自动释放 TurboJPEG 实例的 RAII 包装器
struct TJDeleter {
void operator()(tjhandle h) const { if (h) tjDestroy(h); }
};
using TJHandle = std::unique_ptr<void, TJDeleter>;
Image read_jpeg(const std::string& path) {
// 1. 读取文件到内存
std::ifstream file(path, std::ios::binary | std::ios::ate);
if (!file) throw std::runtime_error("Cannot open file: " + path);
const size_t file_size = file.tellg();
file.seekg(0);
std::vector<uint8_t> jpeg_data(file_size);
if (!file.read(reinterpret_cast<char*>(jpeg_data.data()), file_size)) {
throw std::runtime_error("Failed to read file: " + path);
}
// 2. 初始化 TurboJPEG
TJHandle jpeg(tjInitDecompress());
if (!jpeg) throw std::runtime_error("TurboJPEG init failed: " + std::string(tjGetErrorStr()));
// 3. 获取图像信息(使用 tjDecompressHeader3)
int width, height, subsamp, colorspace;
if (tjDecompressHeader3(
jpeg.get(), jpeg_data.data(), jpeg_data.size(),
&width, &height, &subsamp, &colorspace) != 0
) {
throw std::runtime_error("JPEG header error: " + std::string(tjGetErrorStr()));
}
// 5. 分配输出缓冲区(RGB 格式)
const int pixel_format = TJPF_RGB; // 输出格式
const int pixel_size = tjPixelSize[pixel_format];
Image img(width, height, pixel_size);
// 6. 解压图像(使用 tjDecompress3)
if (tjDecompress2(
jpeg.get(),
jpeg_data.data(), jpeg_data.size(),
img.data.data(), width, 0, height,
pixel_format,
TJFLAG_FASTDCT | TJFLAG_NOREALLOC // 禁止内部重分配
) != 0 // 忽略 ROI 和元数据
) {
throw std::runtime_error("JPEG decompress failed: " + std::string(tjGetErrorStr()));
}
return img;
}
// 编码实现
std::vector<uint8_t> encode_jpeg(const Image& img, int quality ) {
// 参数校验
if (img.data.empty() || img.width <= 0 || img.height <= 0) {
throw std::runtime_error("Invalid image data");
}
if (quality < 1 || quality > 100) {
throw std::runtime_error("Quality must be between 1-100");
}
// 初始化 TurboJPEG 压缩器
TJHandle jpeg(tjInitCompress());
if (!jpeg) {
throw std::runtime_error("TurboJPEG init failed: " + std::string(tjGetErrorStr()));
}
// 设置像素格式
int pixel_format;
switch (img.channels) {
case 1: pixel_format = TJPF_GRAY; break;
case 3: pixel_format = TJPF_RGB; break;
case 4: pixel_format = TJPF_RGBA; break;
default:
throw std::runtime_error("Unsupported image channels");
}
// 压缩 JPEG
uint8_t* jpeg_buf = nullptr;
unsigned long jpeg_size = 0;
if (tjCompress2(
jpeg.get(),
img.data.data(), img.width, 0, img.height,
pixel_format,
&jpeg_buf, &jpeg_size,
TJSAMP_444, // 4:4:4 色度采样(最高质量)
quality,
TJFLAG_ACCURATEDCT // 高精度 DCT
) != 0) {
throw std::runtime_error("JPEG compression failed: " + std::string(tjGetErrorStr()));
}
// 复制数据到 vector(TurboJPEG 需要手动释放内存)
std::vector<uint8_t> result(jpeg_buf, jpeg_buf + jpeg_size);
tjFree(jpeg_buf);
return result;
}
// 保存到文件
void save_jpeg(const std::string& path, const Image& img, int quality) {
auto jpeg_data = encode_jpeg(img, quality);
std::ofstream file(path, std::ios::binary);
if (!file) throw std::runtime_error("Cannot open output file");
file.write(reinterpret_cast<const char*>(jpeg_data.data()), jpeg_data.size());
}
cpp
复制代码
#include "image_scale.hpp"
#include <iostream>
#include <string>
int main() {
try {
// ============================================
// 1. 读取 JPEG 文件(不缩放)
// ============================================
const std::string input_path = "C:\\image\\jpeg_image.jpg";
Image original = read_jpeg(input_path);
std::cout << "Original image: " << original.width << "x" << original.height
<< " (DPI: " << original.dpi << ")\n";
// ============================================
// 2. 缩放操作(四种方法演示)
// ============================================
// 2.1 最近邻缩小 2 倍
Image nearest = scale_image(
original,
{ original.width / 2, original.height / 2 },
-1.0f, // 保持原DPI
ScaleMethod::Nearest
);
// 2.2 双线性缩小到 400x300
Image bilinear_400x300 = scale_image(
original,
{ 400, 300 },
-1.0f,
ScaleMethod::Bilinear
);
// 2.3 双三次缩放到 150 DPI(自动计算尺寸)
float target_dpi = 150.0f;
Image bicubic_150dpi = scale_image(
original,
{ 0, 0 }, // 自动计算尺寸
target_dpi,
ScaleMethod::Bicubic
);
std::cout << "Bicubic scaled to DPI " << target_dpi << ": "
<< bicubic_150dpi.width << "x" << bicubic_150dpi.height << "\n";
// 2.4 金字塔降采样缩小到 1/4 尺寸
Image pyramid_quarter = scale_image(
original,
{ original.width / 4, original.height / 4 },
-1.0f,
ScaleMethod::Pyramid
);
// ============================================
// 4. 编码与保存
// ============================================
// 4.1 保存为不同质量的 JPEG
save_jpeg("C:\\image\\nearest.jpg", nearest, 95); // 高质量
save_jpeg("C:\\image\\bilinear.jpg", bilinear_400x300, 95);
save_jpeg("C:\\image\\bicubi.jpg", bicubic_150dpi, 95); // 低质量
save_jpeg("C:\\image\\pyramid.jpg", pyramid_quarter, 95); // 低质量
std::cout << "All operations completed successfully!\n";
}
catch (const std::exception& e) {
std::cerr << "Fatal Error: " << e.what() << "\n";
return 1;
}
return 0;
}