矩阵分析 方阵幂级数与方阵函数

矩阵分析 方阵幂级数与方阵函数

一、方阵幂级数

1、方阵幂级数概念

设 { c k } \{c_k\} {ck} 是复数列, ∀ X ∈ C n × n \forall X \in \mathbb{C}^{n \times n} ∀X∈Cn×n,称
∑ k = 0 ∞ c k X k = c 0 E + c 1 X + c 2 X 2 + ⋯ + c k X k + ⋯ \sum_{k=0}^{\infty} c_k X^k = c_0 E + c_1 X + c_2 X^2 + \cdots + c_k X^k + \cdots k=0∑∞ckXk=c0E+c1X+c2X2+⋯+ckXk+⋯

为方阵 X X X 的幂级数, c k c_k ck 称为第 k k k 项的系数。

2、方阵幂级数收敛概念

若当 X = A X=A X=A 时方阵级数
∑ k = 0 ∞ c k X k = c 0 E + c 1 X + c 2 X 2 + ⋯ + c k X k + ⋯ \sum_{k=0}^{\infty} c_k X^k = c_0 E + c_1 X + c_2 X^2 + \cdots + c_k X^k + \cdots k=0∑∞ckXk=c0E+c1X+c2X2+⋯+ckXk+⋯

收敛(或绝对收敛),其和记为 f ( A ) f(A) f(A),则称 ∑ k = 0 ∞ X k \sum_{k=0}^{\infty}X^k ∑k=0∞Xk 在点 A A A 处收敛(或绝对收敛)。

3、方阵幂级数收敛判定

设幂级数 ∑ k = 0 ∞ c k z k \sum_{k=0}^{\infty}c_kz^k ∑k=0∞ckzk 的收敛半径为 R R R, X ∈ C n × n X \in \mathbb{C}^{n \times n} X∈Cn×n 的谱半径为 ρ ( X ) \rho(X) ρ(X),则

  1. 当 ρ ( X ) < R \rho(X)<R ρ(X)<R 时,方阵幂级数绝对收敛
  2. 当 ρ ( X ) < R \rho(X)<R ρ(X)<R 时,方阵幂级数发散

收敛半径 R R R 的求解:
R = lim ⁡ k → ∞ ∣ c k + 1 c k ∣ R=\lim_{k \to \infty}|\frac{c_{k+1}}{c_k}| R=k→∞lim∣ckck+1∣


推论三项这里实际上是利用的谱半径是方阵范数的下确界来推导出来的

例题:


这道题目本质上和上面的题目是一样的,令 B = E − A B=E-A B=E−A,就可以得到 ∥ B ∥ < 1 \|B\|<1 ∥B∥<1,那么 ρ ( B ) < 1 \rho(B) < 1 ρ(B)<1,所以幂级数收敛

并且可以按上面的步骤证明和函数为 A − 1 A^{-1} A−1


二、方阵函数

1、几个常用的方阵函数

通过麦克劳林展开式定义方阵函数:


2、常见方阵函数的性质



相关推荐
熊文豪11 小时前
从零开始:基于CANN ops-transformer的自定义算子开发指南
人工智能·深度学习·transformer·cann
云边有个稻草人11 小时前
基于CANN ops-nn的AIGC神经网络算子优化与落地实践
人工智能·神经网络·aigc
chian-ocean11 小时前
视觉新范式:基于 `ops-transformer` 的 Vision Transformer 高效部署
人工智能·深度学习·transformer
程序猿追11 小时前
探索 CANN Graph 引擎的计算图编译优化策略:深度技术解读
人工智能·目标跟踪
哈__11 小时前
CANN加速语音识别ASR推理:声学模型与语言模型融合优化
人工智能·语言模型·语音识别
大闲在人11 小时前
8. 供应链与制造过程术语:产能
算法·制造·供应链管理·智能制造·工业工程
慢半拍iii11 小时前
CANN算子开发实战:手把手教你基于ops-nn仓库编写Broadcast广播算子
人工智能·计算机网络·ai
一只小小的芙厨11 小时前
寒假集训笔记·以点为对象的树形DP
c++·算法
历程里程碑11 小时前
普通数组----合并区间
java·数据结构·python·算法·leetcode·职场和发展·tornado
weixin_3954489111 小时前
mult_yolov5_post_copy.c_cursor_0205
c语言·python·yolo