- 基础学习建议 :
- Python 与数学 :建议 Python 和数学学习各花不超过三天时间,一周内对二者有初步概念和认知即可。有相关基础的读研人员可少花时间,学习应边用边查。
- 机器学习 :大部分经典算法仅作为面试考点,不建议作为就业和论文重点。推荐学习线性回归、逻辑回归、决策树等,可放在后面学习。
- 数据挖掘 :就业门槛低,不建议优先学习,后续有时间可面试前简单了解。
- 深度学习学习 :
- 经典算法学习 :建议零基础同学先尝试学习深度学习必备经典算法,刷两遍视频,理解算法流程,花一周时间掌握,包括 Transformer 模型。
- 代码学习 :学习 PyTorch 代码,第一遍理解代码每行意思,第二遍有时间可自己尝试编写。学习时间约一周。
- OpenCV 学习 :作为工具包,三天内快速了解其函数输入输出,现用现查,不建议系统学习。
- 方向选择与规划 :
- CV 与 NLP 方向 :CV 方向物体检测适合想快速出成果的同学,公开数据集难度大,自己数据集适合发水论文;NLP 基础算法淘汰,优先学习 Hugging Face 和大模型。
- 论文与就业侧重点 :基础对论文和就业通用,就业也需读论文。论文同学可关注 openmmlab 系列做实验。
- 其他学习要点 :
- 源码学习 :多花时间捋源码,理解代码底层原理,如 YOLO 系列源码必看。
- 拓展学习 :包括行为识别、目标追踪、Transformer、图学习、点云、三维重建、多模态、扩散模型、强化学习等都可拓展学习,但要根据自身情况选择。
- 学习资源与建议 :可参考吴恩达学习理论知识;学习要多学多刷,提升学习能力,学啥都不亏。
AI 学习过程中各阶段的学习重点、时间规划以及不同方向的选择与建议等内容
无名工程师2025-07-28 19:51
相关推荐
Ronin-Lotus2 小时前
深度学习篇---剪裁&缩放cpsvps3 小时前
3D芯片香港集成:技术突破与产业机遇全景分析遇见尚硅谷4 小时前
C语言:*p++与p++有何区别国科安芯4 小时前
抗辐照芯片在低轨卫星星座CAN总线通讯及供电系统的应用探讨AKAMAI4 小时前
利用DataStream和TrafficPeak实现大数据可观察性Ai墨芯1114 小时前
深度学习水论文:特征提取无名工程师4 小时前
神经网络知识讨论艾莉丝努力练剑4 小时前
【数据结构与算法】数据结构初阶:详解排序(二)——交换排序中的快速排序nbsaas-boot4 小时前
AI时代,我们更需要自己的开发方式与平台SHIPKING3934 小时前
【机器学习&深度学习】LLamaFactory微调效果与vllm部署效果不一致如何解决