语音识别指标计算 WER

目录

[CER(Character Error Rate)](#CER(Character Error Rate))

[WER = Word Error Rate(词错误率)](#WER = Word Error Rate(词错误率))

[🧮 WER 计算方式](#🧮 WER 计算方式)

[📌 示例](#📌 示例)

[✅ 理解要点](#✅ 理解要点)


CER(Character Error Rate)

语音识别中的 CER(Character Error Rate) 是衡量语音识别系统准确性的一个重要指标,表示预测文本与参考文本在字符级别上的差异程度。

CER(Character Error Rate)定义:

CER 是编辑距离(Levenshtein 距离)与参考文本字符总数的比值:

语音识别 WER 是什么意思

WER = Word Error Rate(词错误率)

在语音识别(ASR, Automatic Speech Recognition)领域,WER 是一个常用的性能评估指标,全称是:WER = Word Error Rate(词错误率)


🧮 WER 计算方式

WER 是通过比较 识别结果(Hypothesis)真实文本(Reference) 之间的差异来计算的,公式如下:

WER=S+D+IN\text{WER} = \frac{S + D + I}{N}WER=NS+D+I​

其中:

  • S(Substitutions):替换错误数(识别成了其他词)

  • D(Deletions):漏识别的词数

  • I(Insertions):多识别出的词数

  • N:真实文本中的词总数(即 Reference 中的词数)


📌 示例

假设真实文本是:

我 爱 自然语言处理

识别结果是:

我 喜欢 语言 处理

对比:

  • "爱" → "喜欢":1 个替换(S)

  • "自然" 被删掉:1 个删除(D)

  • 没有额外多出的词:0 个插入(I)

  • 总词数 N = 4

则:

WER=1(S)+1(D)+0(I)4=0.5=50%\text{WER} = \frac{1(S)+ 1(D)+ 0(I)}{4} = 0.5 = 50\%WER=41(S)+1(D)+0(I)​=0.5=50%


✅ 理解要点

  • WER 越低越好,0% 表示识别完全正确

  • 常见语音识别模型,比如 Whisper、Kaldi、Wav2Vec2,在高质量数据上 WER 可以低至 5% 以下。

  • 对于方言、多语种或嘈杂环境,WER 通常会高一些。

相关推荐
信息快讯4 小时前
【光学神经网络与人工智能应用专题】
人工智能·深度学习·神经网络
泛联新安4 小时前
iUnit7.0重磅发布|AI驱动更智能的单元测试
人工智能·单元测试
IT_陈寒5 小时前
Spring Boot 3.2震撼发布:5个必知的新特性让你开发效率提升50%
前端·人工智能·后端
Mintopia5 小时前
零信任架构下的 WebAIGC 服务安全技术升级方向
前端·人工智能·trae
Danceful_YJ9 小时前
33.Transformer架构
人工智能·pytorch·深度学习
美狐美颜SDK开放平台11 小时前
美颜SDK性能优化实战:GPU加速与AI人脸美型的融合开发
人工智能·音视频
AI浩12 小时前
VSSD:具有非因果状态空间对偶性的视觉Mamba模型
人工智能·目标检测·计算机视觉
lqqjuly13 小时前
Lidar调试记录Ⅳ之Ubuntu22.04+ROS2+Livox_SDK2环境下编译Livox ROS Driver 2
人工智能·机器人·自动驾驶
qq_4369621813 小时前
数据中台:打破企业数据孤岛,实现全域资产化的关键一步
数据库·人工智能·信息可视化·数据挖掘·数据分析
宇若-凉凉13 小时前
BERT 完整教程指南
人工智能·深度学习·bert