语音识别指标计算 WER

目录

[CER(Character Error Rate)](#CER(Character Error Rate))

[WER = Word Error Rate(词错误率)](#WER = Word Error Rate(词错误率))

[🧮 WER 计算方式](#🧮 WER 计算方式)

[📌 示例](#📌 示例)

[✅ 理解要点](#✅ 理解要点)


CER(Character Error Rate)

语音识别中的 CER(Character Error Rate) 是衡量语音识别系统准确性的一个重要指标,表示预测文本与参考文本在字符级别上的差异程度。

CER(Character Error Rate)定义:

CER 是编辑距离(Levenshtein 距离)与参考文本字符总数的比值:

语音识别 WER 是什么意思

WER = Word Error Rate(词错误率)

在语音识别(ASR, Automatic Speech Recognition)领域,WER 是一个常用的性能评估指标,全称是:WER = Word Error Rate(词错误率)


🧮 WER 计算方式

WER 是通过比较 识别结果(Hypothesis)真实文本(Reference) 之间的差异来计算的,公式如下:

WER=S+D+IN\text{WER} = \frac{S + D + I}{N}WER=NS+D+I​

其中:

  • S(Substitutions):替换错误数(识别成了其他词)

  • D(Deletions):漏识别的词数

  • I(Insertions):多识别出的词数

  • N:真实文本中的词总数(即 Reference 中的词数)


📌 示例

假设真实文本是:

我 爱 自然语言处理

识别结果是:

我 喜欢 语言 处理

对比:

  • "爱" → "喜欢":1 个替换(S)

  • "自然" 被删掉:1 个删除(D)

  • 没有额外多出的词:0 个插入(I)

  • 总词数 N = 4

则:

WER=1(S)+1(D)+0(I)4=0.5=50%\text{WER} = \frac{1(S)+ 1(D)+ 0(I)}{4} = 0.5 = 50\%WER=41(S)+1(D)+0(I)​=0.5=50%


✅ 理解要点

  • WER 越低越好,0% 表示识别完全正确

  • 常见语音识别模型,比如 Whisper、Kaldi、Wav2Vec2,在高质量数据上 WER 可以低至 5% 以下。

  • 对于方言、多语种或嘈杂环境,WER 通常会高一些。

相关推荐
SugarPPig2 分钟前
“非参数化”大语言模型与RAG的关系?
人工智能·语言模型·自然语言处理
Sui_Network6 分钟前
Ika Network 正式发布,让 Sui 智能合约可管理跨链资产
人工智能·物联网·web3·区块链·智能合约·量子计算
禾风wyh12 分钟前
【目标检测】小样本度量学习
人工智能·计算机视觉·目标跟踪
dylan55_you14 分钟前
掌控AI工具链:用 Python + API 构建 AI MCP 服务器
人工智能·ai·mcp
悟乙己20 分钟前
译|生存分析Survival Analysis案例入门讲解(一)
人工智能·机器学习·数据挖掘·生存分析·因果推荐
无奈何杨23 分钟前
从“指点江山”到“赛博求雨”的心路历程
人工智能
老贾专利烩32 分钟前
智能健康项链专利拆解:ECG 与 TBI 双模态监测的硬件架构与信号融合
人工智能·科技·健康医疗
无奈何杨34 分钟前
MCP Server工具参数设计与AI约束指南
人工智能
青梅主码35 分钟前
中国在世界人工智能大会上发布《人工智能全球治理行动计划》:中美 AI 竞争白热化,贸易紧张局势下的全球治理新篇章
人工智能
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | CASCADE:用LLM+编译器技术破解JavaScript混淆难题
javascript·论文阅读·人工智能