玻尔兹曼分布与玻尔兹曼探索

目录

玻尔兹曼分布定义

玻尔兹曼探索:

[1. 玻尔兹曼分布公式](#1. 玻尔兹曼分布公式)

[2. 温度 T 如何影响采样结果?](#2. 温度 T 如何影响采样结果?)

[(1) 高温 (T→∞):](#(1) 高温 (T→∞):)

[(2) 低温 (T→0+):](#(2) 低温 (T→0+):)

[(3) 中等温度 (T∈(0,∞)):](#(3) 中等温度 (T∈(0,∞)):)

[3. 直观示例](#3. 直观示例)

[4. 实际应用中的意义](#4. 实际应用中的意义)

[5.核心误区澄清:选择机制 ≠ 贪心](#5.核心误区澄清:选择机制 ≠ 贪心)

总结

参考:


玻尔兹曼分布定义

统计力学数学中,玻尔兹曼分布 (英语:Boltzmann distribution),或称吉布斯分布 (英语:Gibbs distribution)[1],是一种概率分布概率测度,它给出一个系统处于某种状态的概率,是该状态的能量及温度的函数。该分布以下列形式表示:

其中pi是系统处于状态i的概率,εi是该状态的能量,kT为玻尔兹曼常数k和热力学温度T的乘积。符号∝表示比例(比例常数见§ 分布形式)。

两种状态的概率比称为玻尔兹曼因子,其特征在于其仅取决于两状态之能量差:

其中,pi为状态i的概率,pj为状态j的概率,而ϵi和ϵj分别为状态i和状态j的能量。两能量对应的概率比,必须考虑它们的简并能级

该分布表明,低能量的状态比起高能量的状态具有较高的分布概率。同时,它也能够定量地比较两能级分布概率的关系。

玻尔兹曼分布是状态能量与系统温度的概率分布函数,给出了粒子处于特定状态下的概率[7]。其具有以下形式:

其中pi为状态i的概率,ϵi为状态i之能量, k为玻尔兹曼常数,T为系统的绝对温度,而M是系统中我们有兴趣且可知的状态数量。 分母为归一化常数Q,这个结果源自于所有可能状态的概率之和必须为1的约束条件。

玻尔兹曼分布是使最大化的分布。

玻尔兹曼探索:

在玻尔兹曼探索(Boltzmann Exploration)中,温度系数 TT 是一个关键的超参数,它直接控制着动作选择策略的探索-利用权衡 (Exploration-Exploitation Trade-off)。温度 TT 的变化会显著改变动作概率分布的形状,但不会改变动作价值(Q值)的相对排序。以下详细解释:

1. 玻尔兹曼分布公式

动作 a 被选择的概率由玻尔兹曼分布(Softmax 函数)给出:

其中:

  • Q(a)是动作 aa 的价值估计,

  • T>0 是温度系数,

  • 分母是所有动作的指数值之和。

2. 温度 T 如何影响采样结果?

(1) 高温 (T→∞):
  • 效果:所有动作的概率趋近均匀分布。

  • 数学解释

  • 行为 :智能体完全随机探索,忽略动作的价值差异。

(2) 低温 (T→0+):
  • 效果:概率集中在价值最高的动作上。

  • 数学解释

  • 行为 :智能体趋于贪心策略(纯利用),几乎不探索。

(3) 中等温度 (T∈(0,∞)):
  • T越大:动作概率分布越平缓(高熵,高探索性)。

  • T 越小:分布越尖锐(低熵,高利用性)。

3. 直观示例

假设三个动作的 Q 值:Q(a1)=3, Q(a2)=2, Q(a3)=1:

温度 TT P(a1)P(a1​) P(a2)P(a2​) P(a3)P(a3​) 分布特性
T=10 0.36 0.33 0.31 接近均匀分布
T=1 0.67 0.24 0.09 适度偏向最优动作
T=0.1 0.999 3.7×10−4 1.4×10−9 几乎贪心选择最优

✅ 始终满足 P(a1)>P(a2)>P(a3),但概率差异随 TT 减小而急剧增大

4. 实际应用中的意义

  • 退火策略(Annealing)

    实践中常从高温开始(充分探索),逐渐降低 TT(增加利用),平衡学习过程。

  • 超参数调优

    TT 需根据问题调整:

    • 高噪声环境 → 更高 TT(避免过早收敛到次优解)

    • 确定性环境 → 更低 TT(快速利用已知最优解)。

5.核心误区澄清:选择机制 ≠ 贪心

  • 误解

    "先计算概率分布 → 再选择概率最大的动作 = 贪心策略"

  • 现实

    玻尔兹曼探索的最终动作选择是依概率采样(Stochastic Sampling) ,而非固定选择最大概率动作。
    代码实现伪代码:

python 复制代码
def boltzmann_exploration(Q_values, T):
    # 计算所有动作的指数权重
    exp_values = np.exp(Q_values / T)
    # 计算概率分布 (Softmax)
    probs = exp_values / np.sum(exp_values)
    # 关键步骤:按概率分布随机采样一个动作
    chosen_action = np.random.choice(actions, p=probs)
    return chosen_action

总结

  • 玻尔兹曼探索的探索性来自随机采样,而非直接选择最大概率动作。

  • 温度 TT 通过调节概率分布的平坦度控制采样随机性

    • 高 TT → 分布平坦 → 采样结果多样性高 → 强探索

    • 低 TT → 分布尖锐 → 采样结果集中在最优动作 → 弱探索

  • 贪心策略是 Boltzmann 在 T→0+T→0+ 时的极限情况,正常 T>0T>0 时必有探索行为。

这种设计使智能体能在利用已知高价值动作 的同时,智能地探索潜在有价值的替代动作(而非完全盲目随机),是平衡探索-利用的理想策略之一。

参考:

https://zh.wikipedia.org/wiki/%E7%8E%BB%E5%B0%94%E5%85%B9%E6%9B%BC%E5%88%86%E5%B8%83

相关推荐
北京耐用通信1 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20091 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟1 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播1 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训1 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹2 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
风筝在晴天搁浅2 小时前
代码随想录 718.最长重复子数组
算法
kyle~2 小时前
算法---回溯算法
算法
mys55182 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora2 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习