红花识别分割数据集labelme格式144张1类别

图片都是对着一个场景拍的

数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件)

图片数量(jpg文件个数):144

标注数量(json文件个数):144

标注类别数:1

标注类别名称:["safflower"]

每个类别标注的框数:

safflower count = 144

使用标注工具:labelme=5.5.0

所在仓库:firc-dataset

标注规则:对类别进行画多边形框polygon

重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图片预览:

标注例子:

相关推荐
杜子不疼.1 小时前
进程控制(四):自主Shell命令行解释器
linux·c语言·人工智能
qwerasda1238521 小时前
基于Faster-RCNN_R50_Caffe_FPN_1x_COCO的绿豆计数与识别系统深度学习Python代码实现
python·深度学习·caffe
编码小哥8 小时前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
程序员:钧念8 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路9 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen9 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗9 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
KG_LLM图谱增强大模型10 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd10 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白11 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法