pytorch的 Size[3] 和 Size[3,1] 区别

今天参考d2l-zh-pytorch做循环神经网络中第一个练习时,没有导入d2l库(之前遇到到跟本地numpy冲突),部分需要d2l库的部分采用手搓,发现损失总是不收敛,跟预期极大。经过不断排查,发现是reshape((-1,1))这个写错了,我写成reshape((-1))了。没想到不报错,模型还能训练(

在张量中,维度是用来表示数据结构的多维性。标量(scalar)是一个具有单一值的张量。

python 复制代码
import torch
x = torch.tensor(4)

print(f"x值(tensor类型): {x}\n",
      f"x的数值(数字): {x.item()}\n",
      f"x的维度: {x.shape}")
# x值(tensor类型): 4
#  x的数值(数字): 4       
#  x的维度: torch.Size([])

这里的x就是为标量,它没有维度,所以是[]

标量没有维度!!!

python 复制代码
import torch
x = torch.tensor([1,2,3])

print(f"x值(tensor类型): {x}\n",
      f"x的维度: {x.shape}\n",

      f"x[0]的值(tensor类型): {x[0]}\n",
      f"x[0]的数值(数字): {x[0].item()}\n",
      f"x[0]的维度: {x[0].shape}")
# x值(tensor类型): tensor([1, 2, 3])
#  x的维度: torch.Size([3])
#  x[0]的值(tensor类型): 1
#  x[0]的数值(数字): 1
#  x[0]的维度: torch.Size([])

这个上面的x是一维张量(向量),单个x元素是标量,没有维度。

python 复制代码
import torch
x = torch.tensor([1,2,3])
x = x.reshape((-1,1))
print(f"x的维度: {x.shape}\n",
      f"x[0]的维度: {x[0].shape}\n"
      f"x[0]的数值: {x[0].item()}")
# x的维度: torch.Size([3, 1])
#  x[0]的维度: torch.Size([1])
# x[0]的数值: 1

这个上面的x是二维张量(向量),单个x元素是一维张量,维度为1。

因为之前主要写C++,所以当pytorch输出Size[3]时觉得是(1,3)这样维度为2的。这是由于我没有考虑到张量和标量的区别。

相关推荐
WSSWWWSSW1 分钟前
Seaborn数据可视化实战:Seaborn数据可视化基础-从内置数据集到外部数据集的应用
python·信息可视化·数据分析·matplotlib·seaborn
Small___ming1 分钟前
Matplotlib 可视化大师系列(七):专属篇 - 绘制误差线、等高线与更多特殊图表
python·信息可视化·matplotlib
技术与健康27 分钟前
LLM实践系列:利用LLM重构数据科学流程03- LLM驱动的数据探索与清洗
大数据·人工智能·重构
张小九991 小时前
Foldseek快速蛋白质结构比对
人工智能
云卓SKYDROID2 小时前
无人机延时模块技术难点解析
人工智能·无人机·高科技·云卓科技·延迟摄像
神齐的小马2 小时前
机器学习 [白板推导](十三)[条件随机场]
人工智能·机器学习
荼蘼2 小时前
CUDA安装,pytorch库安装
人工智能·pytorch·python
@Wufan3 小时前
【机器学习】7 Linear regression
人工智能·机器学习·线性回归
杨荧3 小时前
基于Python的农作物病虫害防治网站 Python+Django+Vue.js
大数据·前端·vue.js·爬虫·python
cxr8283 小时前
自动化知识工作AI代理的工程与产品实现
运维·人工智能·自动化