pytorch的 Size[3] 和 Size[3,1] 区别

今天参考d2l-zh-pytorch做循环神经网络中第一个练习时,没有导入d2l库(之前遇到到跟本地numpy冲突),部分需要d2l库的部分采用手搓,发现损失总是不收敛,跟预期极大。经过不断排查,发现是reshape((-1,1))这个写错了,我写成reshape((-1))了。没想到不报错,模型还能训练(

在张量中,维度是用来表示数据结构的多维性。标量(scalar)是一个具有单一值的张量。

python 复制代码
import torch
x = torch.tensor(4)

print(f"x值(tensor类型): {x}\n",
      f"x的数值(数字): {x.item()}\n",
      f"x的维度: {x.shape}")
# x值(tensor类型): 4
#  x的数值(数字): 4       
#  x的维度: torch.Size([])

这里的x就是为标量,它没有维度,所以是[]

标量没有维度!!!

python 复制代码
import torch
x = torch.tensor([1,2,3])

print(f"x值(tensor类型): {x}\n",
      f"x的维度: {x.shape}\n",

      f"x[0]的值(tensor类型): {x[0]}\n",
      f"x[0]的数值(数字): {x[0].item()}\n",
      f"x[0]的维度: {x[0].shape}")
# x值(tensor类型): tensor([1, 2, 3])
#  x的维度: torch.Size([3])
#  x[0]的值(tensor类型): 1
#  x[0]的数值(数字): 1
#  x[0]的维度: torch.Size([])

这个上面的x是一维张量(向量),单个x元素是标量,没有维度。

python 复制代码
import torch
x = torch.tensor([1,2,3])
x = x.reshape((-1,1))
print(f"x的维度: {x.shape}\n",
      f"x[0]的维度: {x[0].shape}\n"
      f"x[0]的数值: {x[0].item()}")
# x的维度: torch.Size([3, 1])
#  x[0]的维度: torch.Size([1])
# x[0]的数值: 1

这个上面的x是二维张量(向量),单个x元素是一维张量,维度为1。

因为之前主要写C++,所以当pytorch输出Size[3]时觉得是(1,3)这样维度为2的。这是由于我没有考虑到张量和标量的区别。

相关推荐
无心水1 小时前
【分布式利器:腾讯TSF】10、TSF故障排查与架构评审实战:Java架构师从救火到防火的生产哲学
java·人工智能·分布式·架构·限流·分布式利器·腾讯tsf
我的xiaodoujiao2 小时前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 38--Allure 测试报告
python·学习·测试工具·pytest
小鸡吃米…7 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫8 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)8 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan8 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维8 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS8 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd9 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
njsgcs9 小时前
ue python二次开发启动教程+ 导入fbx到指定文件夹
开发语言·python·unreal engine·ue