本地AI知识库问答开源技术实现(三)--配置模型和知识库

本文较长,建议点赞收藏,以免遗失。更多AI大模型开发学习视频籽料,

都在这>>Github<<

搭建知识库问答助手

  • 在模型和知识库都准备完成后,就可以搭建一个智能助手了;

  • Dify 里,可以使用 工作流 的形式来搭建智能助手;

  • 打开 工作室 -> 创建空白应用 ,选择 Chatflow 来创建一个应用

  • 最简单的知识库助手是使用 聊天助手 来创建应用,但它太单一,无法进行复杂一点的操作,所以这里选择 Chatflow 来创建助手;

  • 创建完成后会来到编排界面

  • 整个流程由多个 节点 组成, Dify 支持多种类型的节点,他们功能不同,本例中使用以下几种类型

    • LLM :配置大语言模型
    • 知识检索 :配置知识库
    • 直接回复 :显示输出结果
  • 为了更精准的匹配到知识库里的内容,首先添加一个 LLM 节点,命名为 拆词 ,目的是借用大模型的语言处理功能来对用户的问题进行拆解,这里模型选择 qwen2.5:14b ,因为经过多轮测试后 qwen2.5:14b 速度和表现达到预期,配置如下:

    • SYSTEM 提示词参考

      diff 复制代码
      - 你的任务是生成用于检索增强生成(RAG)的关键词;
      - 首先你需要直接记住用户的问题作为一个关键词;
      - 其次,用户为公司员工,他的问题和公司制度有关,你需要根据用户的问题推测他的真实需求,进行深度思考后给出RAG关键词,关键词总数量控制在10个以内;
      - 最后你只需将两组关键词合并后返回,每个关键词以","分隔,不需要其他说明和解释;
      - 你需要使用用户的语言来回复;
  • 然后添加一个 知识检索 节点,将他和 拆词 节点进行连接,查询变量设置为 拆词 节点的输出,知识库添加已配置好的知识库

  • 其次再添加一个 LLM 节点,将 知识检索 节点作为入口和它进行连接,模型选择 qwq ,上下文设置为 知识检索 节点的输出结果,点击 添加消息 ,将 USER 类型改为 ASSISTANT 用来指定模型的 提示词 ,配置如下:

    • SYSTEM 提示词参考

      arduino 复制代码
      仅基于上下文和以下内容作为授权知识库来回答用户问题,严格隔离外部知识源
      
      {{#context#}}
    • ASSISTANT 提示词参考

      diff 复制代码
      - 如果用户提的问题超出授权知识库范围,你可以委婉回答:已超出知识范围,让用户提供更多的信息;
      - 有明确定义的名词,不能用相近的词代替;
      - 公式等内容在输出时不能有格式错误;
      - 回复信息时能够表明意思且没遗漏信息的情况下尽可能简短;
      - 如果授权知识库中有公式和数字等,不要对它进行四舍五入操作,保持原来的内容;
      - 如果用户提的问题和上次提的问题没有很强的关联性,不需要考虑之前的问题;
  • 最后将这个节点和 直接回复 节点进行连接,回复内容修改为上一节点的输出结果,最终节点连接图如下:

  • 这样一个智能助手就配置完成了,可以点击 预览 进行测试,输入一个问题后按回车,如果配置正确,整个工作流将逐步进行,效果如下:

  • 测试完成没有问题后就可以发布了,Dify 可以支持将应用嵌入到其他 HTML 页面。

结语

通过三篇内容将最近学的内容梳理了一遍,从基本概念理解,到动手搭建,再到参数调整,最终达到一个基本可用的状态,所有数据都在内网流转;效果没有想像中的那么完美,但是用于知识库是可行的。

相关推荐
SimonKing13 分钟前
IntelliJ IDEA 2025.2.x的小惊喜和小BUG
java·后端·程序员
斯文~1 小时前
【AI论文速递】SymAgent:知识图谱复杂推理的agent框架
人工智能·深度学习·llm·nlp·知识图谱
程序员西西3 小时前
SpringCloudGateway入门实战
java·spring boot·计算机·程序员·编程
north_eagle12 小时前
LightRAG:简单快速的检索增强生成
llm
张彦峰ZYF15 小时前
用Coze打造智能文档整理助手:从创建到发布指南
人工智能·ai·agent·coze
再会呀15 小时前
[Ai Agent] 09 LangGraph 进阶:构建可控、可协作的多智能体系统
langchain·agent
CoderJia程序员甲16 小时前
GitHub 热榜项目 - 日榜(2025-11-22)
ai·开源·llm·github·ai教程
烟袅16 小时前
用 llm + SQLite 实现自然语言到 SQL 的智能转换:一个实战案例
sqlite·llm·agent
烟袅17 小时前
从零开始:前端如何通过 `fetch` 调用 大模型(详解)
前端·javascript·llm
菠菠萝宝20 小时前
【Java手搓RAGFlow】-9- RAG对话实现
java·开发语言·人工智能·llm·jenkins·openai