Python day34

@浙大疏锦行 python day34

内容:

  • 使用GPU训练及类的call方法
  • 使用GPU训练:调用.to(device)就可以使用GPU进行训练,且只有继承nn.Module以及torch.Tensor类型的才可以调用上述方法,同时计算时所有的输入张量和模型必须处于用一个设备,否则会触发运行时错误
  • __call__方法:类内部定义的一个方法,使用实例化后的类名即可直接调用

代码:

python 复制代码
import torch

# 检查CUDA是否可用
if torch.cuda.is_available():
    print("CUDA可用!")
    # 获取可用的CUDA设备数量
    device_count = torch.cuda.device_count()
    print(f"可用的CUDA设备数量: {device_count}")
    # 获取当前使用的CUDA设备索引
    current_device = torch.cuda.current_device()
    print(f"当前使用的CUDA设备索引: {current_device}")
    # 获取当前CUDA设备的名称
    device_name = torch.cuda.get_device_name(current_device)
    print(f"当前CUDA设备的名称: {device_name}")
    # 获取CUDA版本
    cuda_version = torch.version.cuda
    print(f"CUDA版本: {cuda_version}")
    # 查看cuDNN版本(如果可用)
    print("cuDNN版本:", torch.backends.cudnn.version())

else:
    print("CUDA不可用。")


# 设置GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")


# 实例化模型并移至GPU
model = MLP().to(device)
python 复制代码
class Studen():
    def __init__(self, name):
        self.name = name
    def __call(self):
        print("Hello + self.name")

stu1 = Student()
stu1() # 输出 Hello, name
相关推荐
后端小张几秒前
[AI 学习日记] 深入解析MCP —— 从基础配置到高级应用指南
人工智能·python·ai·开源协议·mcp·智能化转型·通用协议
天青色等烟雨..3 分钟前
AI+Python驱动的无人机生态三维建模与碳储/生物量/LULC估算全流程实战技术
人工智能·python·无人机
渡我白衣7 分钟前
深度学习进阶(七)——智能体的进化:从 LLM 到 AutoGPT 与 OpenDevin
人工智能·深度学习
新子y8 分钟前
【小白笔记】岛屿的周长(Island Perimeter)
笔记·python
乌恩大侠24 分钟前
【USRP】AI-RAN Sionna 5G NR 开发者套件
人工智能·5g
孤狼灬笑26 分钟前
机器学习十大经典算法解析与对比
人工智能·算法·机器学习
聚梦小课堂27 分钟前
ComfyUI Blog: ImagenWorld 发布:面向图像生成与编辑的真实世界基准测试数据集
人工智能·深度学习·图像生成·benchmark·imagenworld
星际棋手32 分钟前
【AI】一文说清楚神经网络、机器学习、专家系统
人工智能·神经网络·机器学习
测试开发技术37 分钟前
什么样的 prompt 是好的 prompt?
人工智能·ai·大模型·prompt
M17迪Pq:00071 小时前
学会“做减法”之--用户体验优化
人工智能·贪心算法·产品运营·动态规划·软件工程