⭐CVPR 文本到 3D 场景生成新突破:Prometheus 框架解析

📄论文题目:Prometheus: 3D-Aware Latent Diffusion Models for Feed-Forward Text-to-3D Scene Generation

✍️作者及机构:Yuanbo Yang、Jiahao Shao、Xinyang Li、Yujun Shen、Andreas Geiger、Yiyi Liao(浙江大学、厦门大学、蚂蚁集团、University of T¨ubingen)

🧩面临问题:当前 3D 生成模型存在泛化能力有限、效率低下及质量问题。一方面,依赖 3D / 多视图数据或单一类别单视图图像的模型泛化能力弱,因训练数据稀缺;另一方面,利用 2D 数据的方法多通过优化生成 3D 表示,过程耗时,且因 2D 模型缺乏 3D 完整理解,易出现多视图不一致(Janus 问题)和保真度低的情况2。

🎯创新点及其具体研究方法:

1️⃣ 前馈式 3D 高斯生成框架:将 3D 场景生成表述为潜在扩散范式下的多视图、前馈、像素对齐 3D 高斯生成,实现无需迭代优化的直接生成,大幅提升效率,使 3D 场景生成时间缩短至秒级13。

2️⃣ RGB-D 潜空间引入:在 3D 高斯生成中引入 RGB-D 潜空间,分离外观和几何信息。通过预训练的 Stable Diffusion 编码器分别编码 RGB 图像和深度图, concatenate 得到联合潜空间,助力生成具有更高保真度和更优几何结构的 3D 高斯46。

3️⃣ 两阶段训练策略:第一阶段训练 3D 高斯变分自编码器(GS-VAE),以多视图或单视图 RGB-D 图像为输入,预测像素对齐 3D 高斯,编码器复用 Stable Diffusion 编码器,解码器基于其修改;第二阶段训练多视图潜扩散模型(MV-LDM),结合文本提示和相机姿态,联合预测多视图 RGB-D 潜码,且在 9 个多视图和单视图数据集上训练以增强泛化性578。

4️⃣ 混合采样与 CFG-rescale 策略:采用混合采样 guidance,通过文本和姿态引导权重平衡多视图一致性与保真度;同时使用 CFG-rescale 避免条件采样中的过饱和问题,提升生成质量9。

#论文 #3D 生成 #计算机视觉 #深度学习 #文本到 3D #潜在扩散模型 #前馈式生成





相关推荐
中维ZWPD4 分钟前
打破工业软件分类桎梏:ZWPD的实践探索与创新突破
人工智能·3d·流程图
一枚正在学习的小白31 分钟前
prometheus监控mysql服务
linux·运维·mysql·prometheus
极客BIM工作室1 小时前
SpatialLM:群核科技开源的 3D 空间理解多模态大语言模型
科技·3d·开源
Dave.B14 小时前
用【vtk3DLinearGridCrinkleExtractor】快速提取3D网格相交面
算法·3d·vtk
中科米堆20 小时前
中科米堆CASAIM自动化三维检测-0.02mm计量级精度产品尺寸快速检测
人工智能·3d·3d全尺寸检测
chen_note1 天前
监控——普罗米修斯
grafana·prometheus
中科米堆1 天前
自动化大尺寸批量3D检测,自动化三维扫描系统实现钢板支架在线检测-中科米堆CASAIM
运维·3d·自动化·3d全尺寸检测
闲人编程1 天前
Prometheus监控指标集成指南
prometheus·监控·promql·仪表盘··cncf·codecapsule
CreasyChan1 天前
3D游戏数学基础指南
游戏·3d·unity·数学基础
jingling5551 天前
Mark3D | 用 Mars3D 实现一个炫酷的三维地图
前端·javascript·3d·前端框架·html