【ee类保研面试】数学类---概率论

25保研er,希望将自己的面试复习分享出来,供大家参考

part0---英语类

part1---通信类

part2---信号类

part3---高数类

part100---self项目准备


文章目录


3. 概率论要点


3.1 无偏性、有效性、一致性(相合性)

  • 无偏性:估计量的期望等于参数真值,即估计不系统偏差。
  • 有效性:在所有无偏估计中,方差最小者最有效。
  • 一致性:样本数增大时,估计值趋近于真实参数。

✅ 面试常问:"无偏是否代表一致?"、"有效性和方差有什么关系?"


3.2 全概率公式与贝叶斯公式

  • 全概率公式:用于将复杂事件的概率,分解为多个互斥事件条件下的加权求和。
  • 贝叶斯公式:已知结果,反推出原因;利用先验和似然计算后验概率。
  • 对比:全概率------因推果;贝叶斯------果溯因。

✅ 面试常问:"贝叶斯公式的直观解释?"、"和全概率公式的关系?"


3.3 大数定律与中心极限定理

  • 切比雪夫大数定律:样本均值趋近于期望,适用于有限方差的变量。
  • 伯努利大数定律:事件频率趋近于其真实概率。
  • 中心极限定理:大量独立变量之和趋近正态分布,无论原分布如何。

✅ 面试常问:"大数定律和中心极限定理的区别?"、"为什么正态分布广泛存在?"


3.4 常见概率分布

  • 正态分布:连续型分布,钟形曲线,均值为对称中心。
  • 泊松分布:描述单位时间内某事件发生次数,常用于稀疏事件建模。
  • 指数分布:描述等待时间,记忆性强,常用于寿命分析。

✅ 面试常问:"泊松和指数有什么联系?"、"为什么中心极限定理指向正态?"


3.5 概率密度函数(PDF)

  • 定义连续型随机变量的分布,函数值本身非概率。
  • 用积分求区间概率: P ( a < X < b ) = ∫ a b f ( x )   d x P(a < X < b) = \int_a^b f(x)\,dx P(a<X<b)=∫abf(x)dx。

✅ 面试常问:"PDF值能表示概率吗?"、"如何通过密度函数求概率?"


3.6 联合概率与边缘概率

  • 联合概率:描述多个随机变量同时取某些值的概率。
  • 边缘概率:在联合概率的基础上,固定其他变量后得到某一变量的概率。

✅ 面试常问:"怎么从联合分布求边缘分布?"、"联合≠乘积表示什么?"


3.7 概率论与数理统计的关系

  • 概率论:从模型出发,推测数据如何分布(从因到果)。
  • 数理统计:从数据出发,推测模型参数(从果到因)。

✅ 面试常问:"两者核心区别?"、"你学的内容更偏概率论还是统计?"


3.8 马尔可夫过程

  • 一类随机过程,当前状态只依赖前一状态,不依赖更早状态。
  • 特点:无后效性(记忆性弱)、状态转移矩阵描述过程。

✅ 面试常问:"马尔可夫性本质是什么?"、"怎么建转移概率矩阵?"


3.9 假设检验与两类错误

  • 定义:对总体参数进行判断,基于样本做出"接受"或"拒绝"决策。
  • 一类错误:假设真实但被拒绝(弃真)。
  • 二类错误:假设错误但未拒绝(留伪)。

✅ 面试常问:"p值和第一类错误的关系?"、"犯错概率如何平衡?"


3.10 变量与随机变量

  • 变量:可变数值,没有概率含义。
  • 随机变量:每个取值有概率分布,反映不确定性。

✅ 面试常问:"随机变量为什么需要分布?"、"变量一定是随机的吗?"


3.11 数学期望与方差

  • 数学期望:加权平均值,反映长期平均水平。
  • 方差:衡量数据离散程度,是波动性的量度。

✅ 面试常问:"期望和平均值关系?"、"方差为0说明什么?"


3.12 独立性与相关性

  • 独立性:事件之间完全无影响。
  • 相关性:描述变量间线性关系,可正相关或负相关。

✅ 面试常问:"独立一定不相关吗?"、"不相关是否意味着独立?"


3.13 协方差与相关系数

  • 协方差:刻画变量的联合变化方向,有量纲。
  • 相关系数:协方差的无量纲归一化,值在 -1 到 1 之间。

✅ 面试常问:"为什么要用相关系数?"、"两个变量无协方差就独立吗?"


面试经典问题


📌 概率论面试真题整理


【北航】【北大】贝叶斯公式是什么,有什么应用
  • 已知 B 求 A 的概率,等于 AB 同时发生的概率 / B 的概率。
  • 即事情已经发生,求是哪件事导致的(从果推因)。
  • 也可理解为利用先验和似然来计算后验概率。

【北航】期望和方差的定义
  • 数学期望:加权平均值,反映随机变量的中心趋势。
  • 方差:衡量变量与其期望之间的离散程度。

【北航】全概率公式
  • 必须是完备事件组(两两互斥、联合覆盖样本空间)。
  • 公式: P ( B ) = ∑ i P ( B ∣ A i ) P ( A i ) P(B) = \sum_i P(B|A_i)P(A_i) P(B)=∑iP(B∣Ai)P(Ai)

【复旦】【22年复旦又问到了!】最大似然估计(MLE)
  • 概率是从参数出发预测数据;似然是从数据出发推测参数。
  • 最大似然函数: L ( θ ∣ x ) = P ( x ∣ θ ) L(\theta|x) = P(x|\theta) L(θ∣x)=P(x∣θ)
  • 应用:用于估计模型参数(如正态分布的均值和方差)

【复旦】【北航】解释独立性、相关性、互斥性
  • 独立性:互不影响,P(A∩B) = P(A)P(B),条件概率等于原概率。
  • 互斥性:不能同时发生,P(A∩B) = 0。
  • 条件独立:P(AB∣C)=P(A∣C)P(B∣C)
  • 协方差:衡量两个变量的线性相关强度。
  • 相关系数:对协方差归一化处理,消除量纲影响。
  • 关系:独立 ⇒ 不相关;不相关 ⇏ 独立(举例:Y = X²)

【北大】【北航】大数定律 & 中心极限定理
  • 切比雪夫大数定律:样本均值趋近于期望。
  • 伯努利大数定律:频率趋近于概率。
  • 辛钦大数定律:样本均值 → 数学期望(常见表述)。
  • 中心极限定理:样本均值分布趋近正态分布(适用于任意分布)。
  • 应用:蒙特卡罗模拟、误差估计、置信区间计算等。

【msra】熵是什么
  • 熵衡量信息的不确定性或平均信息量。
  • 定义: H ( X ) = − ∑ P ( x i ) log ⁡ P ( x i ) H(X) = -\sum P(x_i) \log P(x_i) H(X)=−∑P(xi)logP(xi)
  • 应用:编码、压缩、通信系统中衡量信息量。

【北航】【复旦】高斯分布(正态分布)是什么
  • 定义: X ∼ N ( μ , σ 2 ) X \sim N(\mu, \sigma^2) X∼N(μ,σ2)
  • 密度函数为钟形曲线,μ 为均值决定位置,σ 控制分布宽度。
  • 标准正态分布:μ = 0, σ = 1
  • 应用:赋分系统、误差建模、中心极限定理等。

【北航】概率密度函数 是什么
  • 用于描述连续型随机变量的概率分布。
  • 单点概率为0,区间概率由积分给出。
  • 概率密度 = 区间概率 / 区间长度(极限形式)

【北航】二项分布、超几何分布
  • 二项分布:n 次独立伯努利试验中,事件 A 发生 k 次的概率分布。
  • 超几何分布:有限总体中不放回抽取 n 个样本,成功抽到指定类型的次数分布。

【北航】泊松分布
  • 描述单位时间或单位面积内事件发生的次数,λ 为平均次数。
  • 应用:建模稀疏事件,如交通事故、顾客到达等。
  • 二项分布近似形式(当 n 很大、p 很小时,λ = np)。

相关推荐
拾光拾趣录2 小时前
🔥FormData+Ajax组合拳,居然现在还用这种原始方式?💥
前端·面试
爱coding的橙子3 小时前
每日算法刷题Day58:8.7:leetcode 单调栈5道题,用时2h
算法·leetcode·职场和发展
拾光拾趣录3 小时前
🔥9种继承写法全解,第7种99%人没用过?⚠️
前端·面试
Monika Zhang3 小时前
【面试攻略】回答Java面试问题「挑战与解决方案」技巧
面试·职场和发展
我是哪吒3 小时前
分布式微服务系统架构第160集:百万台设备Netty网关架构
后端·面试·github
UrbanJazzerati3 小时前
如何安全地将本地分支与远程分支完全同步?为什么用 git fetch 而不是 git pull?
面试
Baihai_IDP4 小时前
AI 智能体记忆机制详解
人工智能·面试·llm
爱coding的橙子4 小时前
每日算法刷题Day57:8.6:leetcode 单调栈6道题,用时2h
算法·leetcode·职场和发展
今禾4 小时前
# HTML5拖拽进阶:深入实现机制与最佳实践
前端·面试·html