c++ opencv调用yolo onnx文件

网上找了一段代码,测试c++ opencv调用yolo onnx文件

yolov8n.onnx opencv版本是4.12 ,另外测试了4.4和4.6版本的opencv运行有问题,可能对opencv版本有要求,有待研究,都在编译了contrib库的情况下测试的

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>
#include <chrono>

int main()
{
	// 加载 ONNX 模型
	std::string modelPath = "yolov8n.onnx";
	cv::dnn::Net net = cv::dnn::readNetFromONNX(modelPath);
	net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT);
	net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);

	// 定义完整的COCO数据集类别名称
	std::vector<std::string> classes = {
		"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
		"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
		"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
		"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
		"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
		"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
		"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
		"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
		"hair drier", "toothbrush"
	};

	// 打开视频文件或摄像头
	// 0 表示默认摄像头,也可以替换为视频文件路径如 "video.mp4"
	cv::VideoCapture cap("nfs.mp4");

	// 检查视频是否成功打开
	if (!cap.isOpened()) {
		std::cerr << "Error: Unable to open video source" << std::endl;
		return -1;
	}

	// 获取视频的帧率
	double fps = cap.get(cv::CAP_PROP_FPS);
	if (fps == 0) fps = 30.0; // 默认帧率

	// 用于计算FPS的变量
	auto lastTime = std::chrono::high_resolution_clock::now();
	int frameCount = 0;
	double currentFps = 0.0;

	cv::Mat frame;
	while (true) {
		// 读取帧
		cap >> frame;

		// 检查是否成功读取帧
		if (frame.empty()) {
			std::cout << "End of video or error reading frame" << std::endl;
			break;
		}

		// 计算FPS
		frameCount++;
		auto currentTime = std::chrono::high_resolution_clock::now();
		auto elapsedTime = std::chrono::duration_cast<std::chrono::milliseconds>(currentTime - lastTime).count();

		if (elapsedTime >= 1000) { // 每秒更新一次FPS
			currentFps = frameCount / (elapsedTime / 1000.0);
			frameCount = 0;
			lastTime = currentTime;
		}

		// 将图像转换为blob格式
		cv::Mat blob = cv::dnn::blobFromImage(frame, 1 / 255.0, cv::Size(640, 640), cv::Scalar(0, 0, 0), true, false);
		net.setInput(blob);

		// 前向传播, 获取检测结果
		std::vector <cv::Mat> outputs;
		net.forward(outputs, net.getUnconnectedOutLayersNames());

		// output.size [ 1, 84, 8400]
		int rows = outputs[0].size[2];

		// 每个目标存储了多少个值(x,y,w,h+类别数)
		int length = outputs[0].size[1];

		// 转成单通道
		outputs[0] = outputs[0].reshape(1, length);

		// 按对角线翻转
		cv::transpose(outputs[0], outputs[0]);

		float* data = (float*)outputs[0].data;
		float xFactor = (float)frame.cols / 640;
		float yFactor = (float)frame.rows / 640;

		// 解析检测结果
		std::vector<int> classIds;
		std::vector<float> confidences;
		std::vector<cv::Rect> boxes;

		for (int i = 0; i < rows; i++)
		{
			// 存储每个类别的置信度
			cv::Mat scores(1, classes.size(), CV_32FC1, data + 4);
			cv::Point classId;
			double maxClassScore;
			// 读取最大置信度并获得它的索引
			cv::minMaxLoc(scores, 0, &maxClassScore, 0, &classId);

			if (maxClassScore > 0.1)
			{
				confidences.push_back(maxClassScore);
				classIds.push_back(classId.x);

				float x = data[0];
				float y = data[1];
				float w = data[2];
				float h = data[3];

				int left = int((x - 0.5 * w) * xFactor);
				int top = int((y - 0.5 * h) * yFactor);

				int width = int(w * xFactor);
				int height = int(h * yFactor);

				boxes.push_back(cv::Rect(left, top, width, height));
			}
			data += length;
		}

		// 执行非最大抑制,以消除具有较低置信度的冗余重叠框(NMS)
		std::vector<int> nmsResult;
		cv::dnn::NMSBoxes(boxes, confidences, 0.25, 0.7, nmsResult);
		for (int i = 0; i < nmsResult.size(); i++)
		{
			int idx = nmsResult[i];
			int classId = classIds[idx];
			float confidence = confidences[idx];
			cv::Rect box = boxes[idx];

			// 绘制检测框并显示类别名称
			cv::rectangle(frame, box, cv::Scalar(0, 0, 255), 2);
			cv::putText(frame, classes[classId] + ": " + std::to_string(confidence).substr(0, 4),
				cv::Point(box.x, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 255));
		}

		// 在图像上显示FPS
		std::string fpsText = "FPS: " + std::to_string(static_cast<int>(currentFps));
		cv::putText(frame, fpsText, cv::Point(10, 30), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(0, 255, 0), 2);

		// 显示结果
		cv::imshow("YOLO Detection", frame);

		// 按ESC键退出
		if (cv::waitKey(1) == 27) {
			break;
		}
	}

	// 释放资源
	cap.release();
	cv::destroyAllWindows();

	return 0;
}
相关推荐
情深不寿31711 分钟前
C++特殊类的设计
开发语言·c++·单例模式
Vanranrr26 分钟前
nullptr vs NULL:C/C++ 空指针的演变史
c语言·c++
星期天要睡觉27 分钟前
计算机视觉(opencv)——人脸网格关键点检测
python·opencv·计算机视觉
切糕师学AI33 分钟前
【多线程】阻塞等待(Blocking Wait)(以C++为例)
c++·多线程·并发编程·阻塞等待
Sunsets_Red35 分钟前
差分操作正确性证明
java·c语言·c++·python·算法·c#
第七序章1 小时前
【C++】AVL树的平衡机制与实现详解(附思维导图)
c语言·c++·人工智能·机器学习
ajassi20001 小时前
开源 C++ QT QML 开发(十九)多媒体--音频录制
c++·qt·开源
晨非辰1 小时前
【面试高频数据结构(四)】--《从单链到双链的进阶,读懂“双向奔赴”的算法之美与效率权衡》
java·数据结构·c++·人工智能·算法·机器学习·面试
玉树临风江流儿2 小时前
关于pkg-config的使用示例--g++编译过程引入第三方库(如Opencv、Qt)
人工智能·opencv
cookies_s_s2 小时前
LRU Cache 最近最少使用
c++