time limit per test
2 seconds
memory limit per test
256 megabytes
Lunchbox is done with playing chess! His queen and king just got forked again!
In chess, a fork is when a knight attacks two pieces of higher value, commonly the king and the queen. Lunchbox knows that knights can be tricky, and in the version of chess that he is playing, knights are even trickier: instead of moving 1 tile in one direction and 2 tiles in the other, knights in Lunchbox's modified game move a tiles in one direction and b tiles in the other.
Lunchbox is playing chess on an infinite chessboard which contains all cells (x,y) where x and y are (possibly negative) integers. Lunchbox's king and queen are placed on cells (xK,yK) and (xQ,yQ) respectively. Find the number of positions such that if a knight was placed on that cell, it would attack both the king and queen.
Input
Each test contains multiple test cases. The first line contains an integer t (1≤t≤1000) --- the number of test cases. The description of the test cases follows.
The first line of each test case contains two integers a and b (1≤a,b≤108) --- describing the possible moves of the knight.
The second line of each test case contains two integers xK and yK (0≤xK,yK≤108) --- the position of Lunchbox's king.
The third line in a test case contains xQ and yQ (0≤xQ,yQ≤108) --- the position of Lunchbox's queen.
It is guaranteed that Lunchbox's queen and king will occupy different cells. That is, (xK,yK)≠(xQ,yQ).
Output
For each test case, output the number of positions on an infinite chessboard such that a knight can attack both the king and the queen.
Example
Input
Copy
4
2 1
0 0
3 3
1 1
3 1
1 3
4 4
0 0
8 0
4 2
1 4
3 4
Output
Copy
2
1
2
0
Note
In the first test case, the knight can move 2 squares in one direction and 1 square in the other (it is essentially the same as the knight in standard chess). A knight placed on (2,1) or (1,2) would attack both the king and queen.

Example of a knight placement that forks the queen and king in the first test case. The squares that the knight attacks are highlighted in red.
In the second test case, a knight placed on (2,2) would attack both the king and queen.

Example of a knight placement that does not fork the queen and king in the second test case. The knight attacks the king but not the queen.
In the third test case, a knight placed on (4,4) or (4,−4) would attack both the king and queen.
In the fourth test case, there are no positions where the knight can attack both the king and the queen.
(Credits to EnDeRBeaT for the nice images)
解题说明:此题是一道几何题,根据题目意思,判断图中的一个点能否通过移动a和b到达其他两个点。这里直接遍历进行求解,用另外两个点作为基准,判断能否得到一个共同点,找出所有这种情况。注意a和b相等的情况,此时需要除以4。
cpp
#include<bits/stdc++.h>
#include<iostream>
using namespace std;
int T, a, b, kx, ky, qx, qy, t;
int main()
{
cin >> T;
while (T--)
{
cin >> a >> b >> kx >> ky >> qx >> qy;
t = 0;
int dx[8] = { -a,-a,-b,-b,a,a,b,b }, dy[8] = { b,-b,a,-a,b,-b,a,-a };
for (int i = 0; i < 8; ++i)
{
for (int j = 0; j < 8; ++j)
{
if (kx + dx[i] == qx + dx[j] && ky + dy[i] == qy + dy[j])
{
++t;
}
}
}
if (a == b)
{
t /= 4;
}
cout << t << endl;
}
return 0;
}