机器学习-KNN算法示例

python 复制代码
# 导入鸢尾花数据集
from sklearn.datasets import load_iris
# 导入K近邻分类器
from sklearn.neighbors import KNeighborsClassifier
# 导入标准化预处理器
from sklearn.preprocessing import StandardScaler
# 导入数据集划分工具
from sklearn.model_selection import train_test_split

# 加载鸢尾花数据集
data1 = load_iris()
# 将数据集划分为训练集和测试集,random_state=22 保证每次划分结果一致
x_train, x_test, y_train, y_test = train_test_split(data1.data, data1.target, random_state=22)

# 创建标准化对象
trans = StandardScaler()
# 对训练集进行标准化拟合与转换
x_train = trans.fit_transform(x_train)
# 对测试集进行标准化转换(使用训练集的统计信息)##这样才能保证准确性
x_test = trans.transform(x_test)

# 创建K近邻分类器对象,设置邻居数为5
em = KNeighborsClassifier(n_neighbors=5)
# 使用训练集数据训练模型
em.fit(x_train, y_train)
# 使用测试集特征数据进行预测
y_predict = em.predict(x_test)
# 输出模型在测试集上的准确率
print(em.score(x_test, y_test))

使用交叉验证与网格搜索优化

python 复制代码
# 导入鸢尾花数据集
from sklearn.datasets import load_iris
# 导入K近邻分类器
from sklearn.neighbors import KNeighborsClassifier
# 导入标准化预处理器
from sklearn.preprocessing import StandardScaler
# 导入数据集划分工具
from sklearn.model_selection import train_test_split,GridSearchCV

# 加载鸢尾花数据集
data1 = load_iris()
# 将数据集划分为训练集和测试集,random_state=22 保证每次划分结果一致
x_train, x_test, y_train, y_test = train_test_split(data1.data, data1.target, random_state=22)

# 创建标准化对象
trans = StandardScaler()
# 对训练集进行标准化拟合与转换
x_train = trans.fit_transform(x_train)
# 对测试集进行标准化转换(使用训练集的统计信息)##这样才能保证准确性
x_test = trans.transform(x_test)

# 创建K近邻分类器对象
em = KNeighborsClassifier()
##使用网格搜索与交叉验证实现最优K值的搜索param_grid要用字典的形式给出,cv=10表示是10折
em=GridSearchCV(em,param_grid={'n_neighbors':[1,2,3,4,5,6,7,8,9,10]},cv=10)

# 使用训练集数据训练模型,模型进行训练和预测的时候是把param_grid中的每一个值都测试了一遍
em.fit(x_train, y_train)
# 使用测试集特征数据进行预测,选用测试结果最好的哪个进行预测
y_predict = em.predict(x_test)
# 输出模型在测试集上的准确率
print(em.score(x_test, y_test))##整体最好的准确率
print(em.best_params_)##最好的K值
print(em.best_score_)##10折里最优的准确率

score与best_score的不同:

相关推荐
梦帮科技1 分钟前
OpenClaw 桥接调用 Windows MCP:打造你的 AI 桌面自动化助手
人工智能·windows·自动化
永远都不秃头的程序员(互关)8 分钟前
CANN模型量化赋能AIGC:深度压缩,释放生成式AI的极致性能与资源潜力
人工智能·aigc
爱华晨宇12 分钟前
CANN Auto-Tune赋能AIGC:智能性能炼金术,解锁生成式AI极致效率
人工智能·aigc
聆风吟º14 分钟前
CANN算子开发:ops-nn神经网络算子库的技术解析与实战应用
人工智能·深度学习·神经网络·cann
偷吃的耗子19 分钟前
【CNN算法理解】:CNN平移不变性详解:数学原理与实例
人工智能·算法·cnn
勾股导航19 分钟前
OpenCV图像坐标系
人工智能·opencv·计算机视觉
神的泪水21 分钟前
CANN 生态实战:`msprof-performance-analyzer` 如何精准定位 AI 应用性能瓶颈
人工智能
芷栀夏21 分钟前
深度解析 CANN 异构计算架构:基于 ACL API 的算子调用实战
运维·人工智能·开源·cann
威迪斯特22 分钟前
项目解决方案:医药生产车间AI识别建设解决方案
人工智能·ai实时识别·视频实时识别·识别盒子·识别数据分析·项目解决方案
笔画人生22 分钟前
# 探索 CANN 生态:深入解析 `ops-transformer` 项目
人工智能·深度学习·transformer