机器学习-KNN算法示例

python 复制代码
# 导入鸢尾花数据集
from sklearn.datasets import load_iris
# 导入K近邻分类器
from sklearn.neighbors import KNeighborsClassifier
# 导入标准化预处理器
from sklearn.preprocessing import StandardScaler
# 导入数据集划分工具
from sklearn.model_selection import train_test_split

# 加载鸢尾花数据集
data1 = load_iris()
# 将数据集划分为训练集和测试集,random_state=22 保证每次划分结果一致
x_train, x_test, y_train, y_test = train_test_split(data1.data, data1.target, random_state=22)

# 创建标准化对象
trans = StandardScaler()
# 对训练集进行标准化拟合与转换
x_train = trans.fit_transform(x_train)
# 对测试集进行标准化转换(使用训练集的统计信息)##这样才能保证准确性
x_test = trans.transform(x_test)

# 创建K近邻分类器对象,设置邻居数为5
em = KNeighborsClassifier(n_neighbors=5)
# 使用训练集数据训练模型
em.fit(x_train, y_train)
# 使用测试集特征数据进行预测
y_predict = em.predict(x_test)
# 输出模型在测试集上的准确率
print(em.score(x_test, y_test))

使用交叉验证与网格搜索优化

python 复制代码
# 导入鸢尾花数据集
from sklearn.datasets import load_iris
# 导入K近邻分类器
from sklearn.neighbors import KNeighborsClassifier
# 导入标准化预处理器
from sklearn.preprocessing import StandardScaler
# 导入数据集划分工具
from sklearn.model_selection import train_test_split,GridSearchCV

# 加载鸢尾花数据集
data1 = load_iris()
# 将数据集划分为训练集和测试集,random_state=22 保证每次划分结果一致
x_train, x_test, y_train, y_test = train_test_split(data1.data, data1.target, random_state=22)

# 创建标准化对象
trans = StandardScaler()
# 对训练集进行标准化拟合与转换
x_train = trans.fit_transform(x_train)
# 对测试集进行标准化转换(使用训练集的统计信息)##这样才能保证准确性
x_test = trans.transform(x_test)

# 创建K近邻分类器对象
em = KNeighborsClassifier()
##使用网格搜索与交叉验证实现最优K值的搜索param_grid要用字典的形式给出,cv=10表示是10折
em=GridSearchCV(em,param_grid={'n_neighbors':[1,2,3,4,5,6,7,8,9,10]},cv=10)

# 使用训练集数据训练模型,模型进行训练和预测的时候是把param_grid中的每一个值都测试了一遍
em.fit(x_train, y_train)
# 使用测试集特征数据进行预测,选用测试结果最好的哪个进行预测
y_predict = em.predict(x_test)
# 输出模型在测试集上的准确率
print(em.score(x_test, y_test))##整体最好的准确率
print(em.best_params_)##最好的K值
print(em.best_score_)##10折里最优的准确率

score与best_score的不同:

相关推荐
weisian1516 分钟前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai9 分钟前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
爱看科技12 分钟前
微美全息(NASDAQ:WIMI)研究拜占庭容错联邦学习算法,数据安全与隐私保护的双重保障
算法
186******2053112 分钟前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构
qq_4171292517 分钟前
C++中的桥接模式变体
开发语言·c++·算法
森之鸟21 分钟前
多智能体系统开发入门:用鸿蒙实现设备间的AI协同决策
人工智能·harmonyos·m
铁蛋AI编程实战28 分钟前
大模型本地轻量化微调+端侧部署实战(免高端GPU/16G PC可运行)
人工智能·架构·开源
铁蛋AI编程实战28 分钟前
最新版 Kimi K2.5 完整使用教程:从入门到实战(开源部署+API接入+多模态核心功能)
人工智能·开源
我有医保我先冲32 分钟前
AI 时代 “任务完成“ 与 “专业能力“ 的区分:理论基础、行业影响与个人发展策略
人工智能·python·机器学习
Bamtone202540 分钟前
PCB切片分析新方案:Bamtone MS90集成AI的智能测量解决方案
人工智能