fastapi的BackgroundTasks有哪些典型常用的用法?

在 FastAPI 中,BackgroundTasks 用于在返回响应后异步执行一些后台任务,避免阻塞用户等待耗时操作完成。以下是几个典型常用法和具体例子:

1. 发送通知(邮件/消息)

用户操作后需要发送通知通知,但不需要等待通知发送完成再返回结果。

python 复制代码
from fastapi import FastAPI, BackgroundTasks
import smtplib
from email.message import EmailMessage

app = FastAPI()

def send_notification_email(email: str, content: str):
    """发送邮件通知(实际项目中可替换为异步邮件库)"""
    msg = EmailMessage()
    msg.set_content(content)
    msg["Subject"] = "操作成功通知"
    msg["From"] = "system@example.com"
    msg["To"] = email
    
    # 模拟邮件发送(实际中使用SMTP服务器)
    with smtplib.SMTP("smtp.example.com", 587) as server:
        server.send_message(msg)

@app.post("/order")
async def create_order(
    user_email: str,
    background_tasks: BackgroundTasks
):
    # 核心业务:创建订单(快速完成)
    order_id = "ORD123456"
    
    # 添加后台任务:发送通知邮件
    background_tasks.add_task(
        send_notification_email,
        user_email,
        f"您的订单 {order_id} 已创建成功!"
    )
    
    return {"message": "订单创建成功", "order_id": order_id}

2. 日志记录与数据分析

用户行为日志不需要实时写入,可以后台异步处理,避免影响接口响应速度。

python 复制代码
from fastapi import FastAPI, BackgroundTasks
import json
from datetime import datetime

app = FastAPI()

def log_user_behavior(user_id: str, action: str, details: dict):
    """写入用户行为日志到文件或数据库"""
    log_data = {
        "user_id": user_id,
        "action": action,
        "details": details,
        "timestamp": datetime.now().isoformat()
    }
    with open("user_behavior.log", "a") as f:
        f.write(json.dumps(log_data) + "\n")

@app.post("/user/login")
async def user_login(
    user_id: str,
    background_tasks: BackgroundTasks
):
    # 核心业务:验证登录(快速完成)
    login_success = True  # 实际中为验证逻辑
    
    # 添加后台任务:记录登录日志
    background_tasks.add_task(
        log_user_behavior,
        user_id,
        "login",
        {"success": login_success, "device": "mobile"}
    )
    
    return {"message": "登录成功" if login_success else "登录失败"}

3. 异步生成大型文件/报表

用户请求生成大型报表时,先返回"处理中"的响应,后台异步生成文件后再通知用户。

python 复制代码
from fastapi import FastAPI, BackgroundTasks
import pandas as pd
import os

app = FastAPI()

def generate_monthly_report(month: str, email: str):
    """生成月度报表并保存(耗时操作)"""
    # 模拟生成大量数据
    data = pd.DataFrame({
        "date": [f"{month}-{i}" for i in range(1, 29)],
        "sales": [i * 1000 for i in range(1, 29)]
    })
    # 保存报表
    file_path = f"reports/{month}_sales_report.xlsx"
    data.to_excel(file_path, index=False)
    
    # 生成后可进一步添加"发送下载链接"的任务
    send_report_email(email, file_path)  # 假设已实现该函数

@app.post("/report/generate")
async def generate_report(
    month: str,
    user_email: str,
    background_tasks: BackgroundTasks
):
    # 核心业务:参数校验(快速完成)
    if not month.match(r"\d{4}-\d{2}"):
        return {"error": "日期格式错误,应为YYYY-MM"}
    
    # 添加后台任务:生成报表
    background_tasks.add_task(
        generate_monthly_report,
        month,
        user_email
    )
    
    return {"message": "报表生成中,完成后将发送通知至您的邮箱"}

4. 清理临时资源

接口处理中生成的临时文件、缓存等,可在返回响应后由后台任务清理。

python 复制代码
from fastapi import FastAPI, BackgroundTasks
import shutil
import tempfile

app = FastAPI()

def clean_temp_files(temp_dir: str):
    """删除临时目录及文件"""
    if os.path.exists(temp_dir):
        shutil.rmtree(temp_dir)

@app.post("/file/process")
async def process_file(
    file_content: str,
    background_tasks: BackgroundTasks
):
    # 创建临时目录并处理文件(核心业务)
    temp_dir = tempfile.mkdtemp()
    temp_file = os.path.join(temp_dir, "temp.txt")
    with open(temp_file, "w") as f:
        f.write(file_content)
    
    # 模拟文件处理(如格式转换、解析等)
    processed_result = f"处理结果:{len(file_content)} 字符"
    
    # 添加后台任务:清理临时文件
    background_tasks.add_task(clean_temp_files, temp_dir)
    
    return {"result": processed_result}

关键特点总结:

  • 任务在返回响应后执行,不阻塞用户请求
  • 适合处理非紧急、耗时但不影响主流程的操作
  • 注意:如果服务器重启,未完成的后台任务会丢失(需结合任务队列如 Celery 处理更可靠的场景)
相关推荐
想用offer打牌13 小时前
MCP (Model Context Protocol) 技术理解 - 第二篇
后端·aigc·mcp
passerby606114 小时前
完成前端时间处理的另一块版图
前端·github·web components
KYGALYX14 小时前
服务异步通信
开发语言·后端·微服务·ruby
掘了14 小时前
「2025 年终总结」在所有失去的人中,我最怀念我自己
前端·后端·年终总结
爬山算法15 小时前
Hibernate(90)如何在故障注入测试中使用Hibernate?
java·后端·hibernate
Moment15 小时前
富文本编辑器在 AI 时代为什么这么受欢迎
前端·javascript·后端
草梅友仁16 小时前
墨梅博客 1.4.0 发布与开源动态 | 2026 年第 6 周草梅周报
开源·github·ai编程
Cobyte16 小时前
AI全栈实战:使用 Python+LangChain+Vue3 构建一个 LLM 聊天应用
前端·后端·aigc
程序员侠客行17 小时前
Mybatis连接池实现及池化模式
java·后端·架构·mybatis