Multi-Agent 系统的主从架构

最近一年,Multi-Agent 系统持续发热发烫,融资不断,火了起来。

从 AutoGPT 到 MetaGPT,从 CrewAI 到 LangGraph,各种多代理框架层出不穷。国内现象级的 Manus,以及当天由 MetaGPT 的同学开源的 OpenManus。OpenAI 的 Swarm、微软的 AutoGen,还有 Anthropic 的 Claude Code,每个大厂都在探索自己的 Multi-Agent 方案。GitHub 上相关项目的 Star 数动辄上万,社区讨论热度持续攀升。

从这股热潮,我们可以看出 AI 应用的一个重要趋势:从单一模型调用走向多智能体协作。就像软件开发从单体应用演进到微服务架构,AI 系统也在探索如何通过多个专门化的 Agent 协同工作,完成更复杂的任务。

当我们仔细观察这些 Multi-Agent 系统的架构时,会发现一个规律:

MetaGPT 里有个产品经理角色,负责协调其他工程师角色;AutoGen 支持 Manager-Worker 模式;Claude Code 更是明确采用了主循环引擎加子任务代理的设计。在 OpenAI Swarm 中,也能看到 Orchestrator Agent 的影子。

这些系统都采用了某种形式的「主从」架构------有一个 Agent 负责全局协调,其他 Agent 提供专门化支持。

为什么?巧合吗?

今天我们就聊聊 Multi-Agent 系统的主从架构。从大模型的底层原理开始。

1 从大模型的原理说起

1.1 大模型的「注意力」机制

要理解为什么需要主从架构,得先理解大模型是怎么「思考」的。

大模型的核心是 Transformer 架构,而 Transformer 的灵魂是注意力机制(Attention)。简单来说,模型在生成每个 token 时,会「注意」到输入中的所有相关信息(上下文窗口内),然后综合这些信息做出决策。

这里有个关键点:大模型的每次决策都是基于它能「看到"」的全部上下文

这就像你在做一道数学题。如果题目是"小明有 5 个苹果,给了小红 2 个",你要回答"小明还剩几个",你必须同时看到"5 个"和"给了 2 个"这两个信息。如果你只看到其中一部分,就无法得出正确答案。

大模型也是如此。它的智能来源于对上下文的完整理解(其智能还来源于预训练时学到的知识,模式识别、知识迁移等能力)。一旦上下文缺失或者矛盾,模型的输出质量就会急剧下降。

1.2 多个模型协作的挑战

当多个大模型(Agent)需要协作时,如何保证它们都拥有必要的上下文?

假设我们有三个 Agent 并行进行开发部署工作:

  • Agent A:负责前端开发
  • Agent B:负责后端开发
  • Agent C:负责部署运维

理想情况下,它们应该像一个经验丰富的全栈工程师一样,时刻知道其他部分的设计决策。但实际上,每个 Agent 都是独立的大模型实例,它们各自维护着自己的上下文。

这就产生了第一个问题:上下文分裂

Agent A 决定使用 React,Agent B 决定用 Python Flask,这本来没问题。但当 Agent A 后续生成代码时假设后端返回 GraphQL,而 Agent B 实际提供的是 REST API,最终代码就无法正常工作。

并且大模型有个特性叫「自回归生成」------每个新的输出都依赖于之前的所有输出。这意味着一旦某个 Agent 做出了错误假设,这个错误会在后续生成中不断放大。

2 主从架构的设计哲学

2.1 为什么主从架构有效

主从架构的核心思想很简单:一个指挥,多个执行。一个主 Agent 掌控全局,其他从 Agent 提供子领域专业化的支持

这个设计直接解决了上下文分裂的问题。主 Agent 始终维护着完整的任务上下文,它知道:

  • 整体目标是什么
  • 已经做了哪些决策
  • 各个部分如何配合
  • 当前的优先级是什么

从 Agent 则像是主 Agent 的「外脑」------当主 Agent 需要专门知识时,会调用相应的从 Agent,但最终的决策和执行都由主 Agent 完成。

在我们做具体实现的时候,每个不同的从 Agent 都有自己的角色和系统 Prompt。

2.2 Claude Code 的实践印证

Claude Code 的设计诠释了主从的理念。根据 Github 上逆向工程的分析,它的架构中:

nO 主循环引擎(主 Agent)负责:

  • 维护完整的代码上下文
  • 协调所有子任务
  • 做最终决策
  • 生成实际代码

I2A 子任务代理(从 Agent)负责:

  • 回答特定问题
  • 提供专业建议
  • 探索可能的解决方案

Claude Code 刻意避免了子 Agent 的并行修改。当需要调查多个方向时,主 Agent 会有限范围内并行地咨询不同的子 Agent,确保每个决策都基于最新的完整上下文。

这种设计看起来「低效」,但实际上避免了大量的错误和重做,总体效率反而更高。

2.3 生物学的启发

并且,主从架构在生物界也是有比较多例子的。

人脑就是一个典型的例子。前额叶皮质充当「主 Agent」,负责高级决策和规划。而各个专门脑区(视觉皮层、听觉皮层、运动皮层等)就像「从 Agent」,处理特定类型的信息。

所有的感官输入最终都会汇聚到前额叶皮质,由它整合信息并做出决策。即使是反射动作,大脑也会在事后「知晓」并可能调整后续行为。

这种中心化的架构经过了数亿年的进化验证。

3 主从架构的技术实现

3.1 上下文管理

实现主从架构,最核心的是上下文管理。主 Agent 需要:

1. 维护完整但精简的上下文

并不是所有信息都同等重要。主 Agent 需要智能地压缩和总结历史信息。Claude Code 使用了一个策略:

当 token 使用量达到阈值的 92% 时,触发压缩机制。关键决策被保留,而从 Agent 的中间探索过程被压缩或丢弃。这样既保持了决策的连贯性,又避免了上下文爆炸。

2. 构建结构化的决策记录

不要只是简单地拼接所有的对话历史。需要结构化地记录:

  • 任务目标和约束
  • 已做出的关键决策
  • 各决策之间的依赖关系
  • 待解决的问题队列

3. 动态调整上下文窗口

根据任务的复杂度和当前阶段,动态调整传递给从 Agent 的上下文量。初期探索阶段可以更开放,后期执行阶段需要更精确。

3.2 Agent 的设计原则

Agent 不是越智能越好,而是要专注可控

1. 明确的能力边界

每个从 Agent 应该有清晰定义的能力范围。比如:

  • 代码审查 Agent:只负责发现潜在问题
  • 重构 Agent:只负责改进代码结构
  • 测试 Agent:只负责生成测试用例

2. 标准化的输入输出

从 Agent 的接口要标准化,这样主 Agent 可以用统一的方式调用它们。输出格式也要规范,便于主 Agent 解析和整合。

3. 无状态设计

从 Agent 最好是无状态的,每次调用都是独立的。这样可以避免状态管理的复杂性,也便于并行化(当任务确实独立时)。

3.3 协调机制的关键点

主 Agent 的协调能力决定了整个系统的表现:

1. 任务分解策略

并不是所有任务都要分解。主 Agent 需要学会判断:

  • 简单任务直接处理
  • 复杂任务分解但保持上下文
  • 探索性任务可以并行但结果需要串行整合

2. 冲突检测与解决

即使在主从架构下,从 Agent 的建议也可能相互矛盾。主 Agent 需要:

  • 检测潜在的冲突
  • 评估不同方案的优劣
  • 做出最终决策并保持一致性

3. 优雅降级

当从 Agent 失败或不可用时,主 Agent 应该能够:

  • 尝试从其它从 Agent 获取
  • 降级到自己处理
  • 调整任务策略

4 主从架构的优势与局限

4.1 主从架构的核心优势

1. 全局一致性保证 主 Agent 作为唯一的决策中心,天然保证了架构决策的一致性。不只是技术栈的选择(比如统一使用 REST 还是 GraphQL),更重要的是接口约定、错误处理策略、命名规范等细节都能保持统一。这种一致性在复杂项目中价值巨大。

2. 清晰的决策链路 每个决策都有明确的来源和依据。你可以在主 Agent 的对话历史中追踪每个架构决定是如何做出的,为什么选择某个方案。这种可追溯性在调试问题或向他人解释系统设计时非常有价值。

3. 优雅的错误处理 主 Agent 掌握全局状态,当某个子任务失败时,它可以准确判断影响范围并制定恢复策略。比如,如果数据库设计出错,主 Agent 知道哪些 API 设计需要相应调整。而在去中心化系统中,这种级联影响很难追踪和修复。

4. 上下文利用最大化 看似串行的决策流程,实际上优化了整体效率:

  • 避免了重复劳动(多个 Agent 不会各自生成相似的代码)
  • 减少了协调开销(不需要 Agent 间的大量通信)
  • 上下文复用充分(主 Agent 的决策历史可以直接传递给从 Agent)

在 Claude Code 的实践中,这种设计让系统能在有限的 token 预算内完成相当复杂的编程任务。

4.2 主从架构的局限性

1. 主 Agent 成为性能瓶颈 所有决策都要经过主 Agent,当需要并行处理多个复杂子任务时,主 Agent 的串行决策会限制整体效率。就像一个项目经理同时管理太多团队,协调成本会急剧上升。

2. 对主 Agent 能力的高度依赖 系统的智能上限取决于主 Agent 的能力。如果主 Agent 对某个领域理解不深,即使有专业的从 Agent,整体表现也会受限。这就像一个不懂技术的经理,很难充分发挥技术团队的潜力。

3. 缺乏真正的协作智能 主从架构本质上是"分解-执行-组合"的模式,缺少 Agent 之间的平等协商和创造性互动。在需要头脑风暴或多视角探索的任务中,这种层级结构可能限制了解决方案的多样性。

4. 任务分解的粒度难题 主 Agent 需要准确判断任务分解的粒度。分得太细,协调成本高;分得太粗,从 Agent 可能无法胜任。而且随着任务复杂度增加,找到合适的分解方式越来越难。

4.3 适用场景分析

主从架构特别适合:

1. 工程化任务

  • 代码生成
  • 系统设计
  • 文档编写

这些任务需要高度的一致性和结构化。

2. 有明确目标的任务

  • 问题诊断
  • 数据分析
  • 流程自动化

目标明确时,中心化协调更高效。

3. 需要可控性的场景

  • 金融交易
  • 医疗诊断
  • 法律咨询

这些领域不能接受不可预测的行为。

不太适合:

1. 创意生成

  • 头脑风暴
  • 艺术创作
  • 探索性研究

2. 大规模并行处理

  • 日志分析
  • 图像批处理
  • 分布式爬虫

3. 对等协作

  • 多人游戏 AI
  • 群体仿真
  • 去中心化系统

5 小结

随着大模型能力的提升,主从架构也在演进:

  • 更长的上下文窗口:GPT-4 已经支持 128K 的上下文,Claude 3 甚至到了 200K。这意味着主 Agent 可以维护更完整的历史,减少信息损失。
  • 更好的指令跟随:新一代模型在指令跟随上有显著提升,从 Agent 可以更准确地理解和执行主 Agent 的指令。
  • 原生的工具调用:模型开始原生支持函数调用,这让主从 Agent 之间的接口更加标准化和可靠。

如果你要实现一个主从架构的 Multi-Agent 系统,以下是一些建议:

1. 设计清晰的 Agent 角色:不要让从 Agent 职责过于宽泛。每个从 Agent 应该像 Unix 工具一样------做一件事,并做好。

2. 实现鲁棒的错误处理

从 Agent 失败是常态,不是异常。主 Agent 需要:

  • 超时机制
  • 重试策略
  • 降级方案
  • 错误隔离

3. 优化上下文传递:控制上下文的边界,并不是所有上下文都需要传递给给到 Agent。根据任务类型,精心设计上下文的内容和格式。

4. 监控和可观测性:记录所有的决策点和 Agent 交互,后面调试和优化用得上。

Multi-Agent 的主从架构,本质上是在解决一个古老的问题:如何组织多个智能体高效地完成复杂任务

从生物进化到人类社会,从计算机架构到分布式系统,我们一次次地发现:在需要一致性和可控性的场景下,某种形式的中心化协调是必要的。

大模型的出现并没有改变这个规律。相反,由于大模型对上下文的强依赖,主从架构变得更加重要。

随着大模型能力的提升和 Agent 技术的成熟,我们会看到更多创新的架构出现。但无论如何演进,那些基本的原则------上下文一致性、决策可控性、错误可恢复性------都是我们在实践中需要谨慎考虑的。

以上。

相关推荐
聚客AI19 分钟前
📈超越Prompt Engineering:揭秘高并发AI系统的上下文工程实践
人工智能·llm·agent
Xの哲學2 小时前
Linux PCI 子系统:工作原理与实现机制深度分析
linux·网络·算法·架构·边缘计算
Code_流苏3 小时前
DeepSeek V3.1深度解析:一个模型两种思维,迈向Agent时代的第一步!
开源·agent·思维·模型设计·deepseek·深度思索·dpv3.1
qb4 小时前
vue3.5.18源码:computed 在发布订阅者模式中的双重角色
前端·vue.js·架构
PetterHillWater4 小时前
关于系统设计原则回顾
架构
树獭非懒4 小时前
Android 媒体篇|吃透 MediaSession 与 MediaController
android·架构
嘀咕博客5 小时前
GitHub Copilot - GitHub 推出的AI编程助手
github·copilot·ai编程·ai工具
吾鳴5 小时前
AI智能体搭建平台全景指南:从入门到选型
agent
杨杨杨大侠7 小时前
Spring AI 系列(一):Spring AI 基础概念与架构入门
人工智能·spring·架构