增加对最短路径的优化算法、负权回路、单源有限最短的讲解
Bellman_ford 队列优化算法
我们之前的松弛算法,是对所有边进行松弛,真正有效的松弛,只有松弛 边(节点1->节点2) 和 边(节点1->节点3)。而松弛 边(节点4->节点6),边(节点5->节点3)等等 都是无效的操作,因为 节点4 和 节点 5 都是没有被计算过的节点。所以 Bellman_ford 算法 每次都是对所有边进行松弛,其实是多做了一些无用功。
只需要对 上一次松弛的时候更新过的节点作为出发节点所连接的边 进行松弛就够了。
基于以上思路,如何记录 上次松弛的时候更新过的节点呢?用队列来记录。简单理解就是每次mindist数组中被更新过的位置就是需要入栈的元素,然后栈顶元素进行松弛操作出栈,同时被修改的元素入栈,最后完成所有的循环(其实用栈也行,对元素顺序没有要求)

效率分析
如果图越稠密,则 SPFA的效率越接近与 Bellman_ford。反之,图越稀疏,SPFA的效率就越高。一般来说,SPFA 的时间复杂度为 O(K * N) K 为不定值,因为 节点需要计入几次队列取决于 图的稠密度。
SPFA(队列优化版Bellman_ford) 在理论上 时间复杂度更胜一筹,但实际上,也要看图的稠密程度,如果 图很大且非常稠密的情况下,虽然 SPFA的时间复杂度接近Bellman_ford,但实际时间消耗 可能是 SPFA耗时更多。
代码实现
最根本的理解,我们这个代码是以边为主的,注意本题没有 负权回路 。
python
import collections
def main():
n, m = map(int, input().strip().split())
edges = [[] for _ in range(n + 1)]
for _ in range(m):
src, dest, weight = map(int, input().strip().split())
edges[src].append([dest, weight])
minDist = [float("inf")] * (n + 1)
minDist[1] = 0
que = collections.deque([1])
visited = [False] * (n + 1)
visited[1] = True
while que:
cur = que.popleft()
visited[cur] = False
for dest, weight in edges[cur]:
if minDist[cur] != float("inf") and minDist[cur] + weight < minDist[dest]:
minDist[dest] = minDist[cur] + weight
if visited[dest] == False:
que.append(dest)
visited[dest] = True
if minDist[-1] == float("inf"):
return "unconnected"
return minDist[-1]
if __name__ == "__main__":
print(main())
Bellman_ford 判断负权回路
本题是要我们判断 负权回路,也就是图中出现环且环上的边总权值为负数。如果在这样的图中求最短路的话, 就会在这个环里无限循环 (也是负数+负数 只会越来越小),无法求出最短路径。
在上期博客中,bellman_ford 算法的核心就是一句话:**对 所有边 进行 n-1 次松弛。 在没有负权回路的图中,松弛 n 次以上 ,结果不会有变化。**但本题有 负权回路,如果松弛 n 次,结果就会有变化了,因为 有负权回路 就是可以无限最短路径(一直绕圈,就可以一直得到无限小的最短距离)。
那么解决本题的 核心思路,就是在 n-1 次松弛的基础上,再多松弛一次,看minDist数组 是否发生变化。
Bellman-Ford方法
python
import sys
def main():
input = sys.stdin.read
data = input().split()
index = 0
n = int(data[index])
index += 1
m = int(data[index])
index += 1
grid = []
for i in range(m):
p1 = int(data[index])
index += 1
p2 = int(data[index])
index += 1
val = int(data[index])
index += 1
# p1 指向 p2,权值为 val
grid.append([p1, p2, val])
start = 1 # 起点
end = n # 终点
minDist = [float('inf')] * (n + 1)
minDist[start] = 0
flag = False
for i in range(1, n + 1): # 这里我们松弛n次,最后一次判断负权回路
for side in grid:
from_node = side[0]
to = side[1]
price = side[2]
if i < n:
if minDist[from_node] != float('inf') and minDist[to] > minDist[from_node] + price:
minDist[to] = minDist[from_node] + price
else: # 多加一次松弛判断负权回路
if minDist[from_node] != float('inf') and minDist[to] > minDist[from_node] + price:
flag = True
if flag:
print("circle")
elif minDist[end] == float('inf'):
print("unconnected")
else:
print(minDist[end])
if __name__ == "__main__":
main()
SPFA方法
这里涉及的问题是节点重复入队,导致本应n-1次结束的过程,没有按时结束,我们需要记录哪些节点已经出队列了,哪些节点在队列里面,对于已经出队列的节点不用统计入度
python
from collections import deque
from math import inf
def main():
n, m = [int(i) for i in input().split()]
graph = [[] for _ in range(n+1)]
min_dist = [inf for _ in range(n+1)]
count = [0 for _ in range(n+1)] # 记录节点加入队列的次数
for _ in range(m):
s, t, v = [int(i) for i in input().split()]
graph[s].append([t, v])
min_dist[1] = 0 # 初始化
count[1] = 1
d = deque([1])
flag = False
while d: # 主循环
cur_node = d.popleft()
for next_node, val in graph[cur_node]:
if min_dist[next_node] > min_dist[cur_node] + val:
min_dist[next_node] = min_dist[cur_node] + val
count[next_node] += 1
if next_node not in d: # 二刷的时候再好好理解
d.append(next_node)
if count[next_node] == n: # 如果某个点松弛了n次,说明有负回路
flag = True
if flag:
break
if flag:
print("circle")
else:
if min_dist[-1] == inf:
print("unconnected")
else:
print(min_dist[-1])
if __name__ == "__main__":
main()
Bellman_ford 单源有限最短路
注意题目中描述是 最多经过 k 个城市的条件下,而不是一定经过k个城市,也可以经过的城市数量比k小,但要最短的路径。对于部分路径节点多但是距离短的结果增加了要求
在 这个系列的第一个题目 中我们讲了:对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离。节点数量为n,起点到终点,最多是 n-1 条边相连。 那么对所有边松弛 n-1 次 就一定能得到 起点到达 终点的最短距离。本题是最多经过 k 个城市, 那么是 k + 1条边相连的节点。
下期这个题目出一个专题
python
def main():
# 輸入
n, m = map(int, input().split())
edges = list()
for _ in range(m):
edges.append(list(map(int, input().split() )))
start, end, k = map(int, input().split())
min_dist = [float('inf') for _ in range(n + 1)]
min_dist[start] = 0
# 只能經過k個城市,所以從起始點到中間有(k + 1)個邊連接
# 需要鬆弛(k + 1)次
for _ in range(k + 1):
update = False
min_dist_copy = min_dist.copy()
for src, desc, w in edges:
if (min_dist_copy[src] != float('inf') and
min_dist_copy[src] + w < min_dist[desc]):
min_dist[desc] = min_dist_copy[src] + w
update = True
if not update:
break
# 輸出
if min_dist[end] == float('inf'):
print('unreachable')
else:
print(min_dist[end])
if __name__ == "__main__":
main()