POML 快速上手(Quick Start)

POML 快速上手(Quick Start)

参考官方教程:microsoft.github.io/poml/stable...

概述

本篇通过一个最小示例带你快速体验 POML 的核心用法:用结构化标记描述"角色、任务、上下文(图片)与输出格式",并在工具链中进行渲染与测试。

准备工作

  • 创建一个工作目录,并在其中放置两份文件:
    • example.poml
    • photosynthesis_diagram.png(任意一张光合作用示意图或你自己的图片,文件名保持一致)
  • 如需更好体验,可安装 VS Code 的 POML 扩展(语法高亮、预览、诊断等)。

目录结构(最小示例)

  • example.poml
  • photosynthesis_diagram.png

示例说明

该示例定义了:

  • 角色(<role>):模型应扮演耐心的教师。
  • 任务(<task>):基于提供的图片解释光合作用。
  • 图片(<img>):为模型提供视觉上下文(需与 .poml 同目录)。
  • 输出格式(<output-format>):限制风格与长度,确保结果稳定可控。

示例内容(概念展示)

将以下概念示例保存为 example.poml。为便于阅读,本示例加入了换行与缩进,语义与官方示例一致。

poml 复制代码
<poml>
  <role>
    You are a patient teacher explaining concepts to a 10-year-old.
  </role>

  <task>
    Explain the concept of photosynthesis using the provided image as a reference.
  </task>

  <img src="photosynthesis_diagram.png" alt="Diagram of photosynthesis" />

  <output-format>
    Keep the explanation simple, engaging, and under 100 words.
    Start with "Hey there, future scientist!".
  </output-format>
</poml>

运行与测试思路

  • 使用 POML 工具链进行渲染与测试(可在 VS Code 扩展中预览)。
  • 使用具备视觉能力的 LLM 进行测试(因为示例包含 <img>)。
  • 你也可以先替换为文本上下文进行测试(例如用 <document> 嵌入一段文字),再扩展到图片。

变体练习(建议)

  • 替换图片内容:用你自己的业务相关图片,观察输出差异。
  • 文本-only 版本:移除 <img>,改用 <document> 或外部文本,验证对输出的影响。
  • 输出风格控制:修改 <output-format> 中的长度、语气、段落/列表格式要求。
  • 结构化扩展:根据入门篇,尝试增加 <example><let> 变量、或样式层(<stylesheet>)来解耦逻辑与呈现。

常见问题

  • 图片找不到:确保 example.pomlphotosynthesis_diagram.png 处于同一目录,且 src 文件名一致。
  • 输出不稳定:通过 <output-format> 明确格式与长度;必要时拆分角色/任务/示例为独立片段以增强稳定性。
  • 多数据整合:使用 <document><table><img> 等组件组合多源信息;对呈现进行样式化以提高一致性。

视频与后续学习

相关推荐
花酒锄作田1 小时前
[MCP][05]Elicitation示例
llm·mcp
大千AI助手3 小时前
TruthfulQA:衡量语言模型真实性的基准
人工智能·语言模型·自然语言处理·llm·模型评估·truthfulqa·事实性基准
AI大模型5 小时前
RAG 真的不聪明?其实它只是缺了这一步……
程序员·llm·agent
大模型教程5 小时前
普通人如何借助 Agentic RAG 打造全智能化电商客服与客户沟通体系
程序员·llm·agent
花酒锄作田8 小时前
[MCP][04]Sampling示例
llm·mcp
聚客AI9 小时前
🚫万能Agent兜底:当规划缺失工具时,AI如何自救
人工智能·llm·agent
花酒锄作田15 小时前
[MCP][03]使用FastMCP开发MCP应用
llm·mcp
wL魔法师16 小时前
【LLM】大模型训练中的稳定性问题
人工智能·pytorch·深度学习·llm
花酒锄作田1 天前
[MCP][02]快速入门MCP开发
llm·mcp
RainbowSea1 天前
10. LangChain4j + 持久化实操详细说明
langchain·llm·ai编程