GraphRAG——v0.3.5版本

GraphRAG------v0.3.5版本

理论部分

安装

python 复制代码
## 创建虚拟环境
conda create -n GraphRAG_0_3_6 python=3.11

# 激活虚拟环境
source activate GraphRAG_0_3_6

# 安装相关依赖包
# 我安装的版本是graphrag==0.3.5
pip install graphrag==0.3.5 --default-timeout=100 -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install future --default-timeout=100 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install fastapi==0.112.0 --default-timeout=100 -i https://pypi.tuna.tsinghua.edu.cn/simple  uvicorn==0.30.6

知识图谱生成

python 复制代码
# 创建文件目录
mkdir -p ./ragtest/input

#下载测试txt文档
curl https://www.gutenberg.org/cache/epub/24022/pg24022.txt -o ./ragtest/input/book.txt

# 设置你的工作区变量
"""
要初始化你的工作区,首先运行 graphrag init 命令。由于我们在上一步已经配置了一个名为 ./ragtest 的目录,运行以下命令:
"""
# 初始化配置(首次)
python -m graphrag.index --init --root ./ragtest

其会生成相关的文件如下所示:

修改相关的配置文件settings.yaml,内容如下:

python 复制代码
encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${GRAPHRAG_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: gpt-3.5-turbo
  model_supports_json: true # recommended if this is available for your model.
  # max_tokens: 4000
  # request_timeout: 180.0
  api_base: http://192.168.41.216:8082/v1 
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  concurrent_requests: 25 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: gpt-4
    api_base: http://192.168.41.216:8080/v1
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional
  


chunks:
  size: 1200
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents
    
input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: false
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

注意:

python 复制代码
claim_extraction:
  enabled: true   # 一定要将其改成true,否则不会生成create_final_covariates.parquet文件

经过上述配置文件修改后

我在生成过程中,当所处理的文本较短时,可以正常生成如下所需文件

当时当文本文件较大时,create_final_community_reports.parquet文件会没有生成,解决的方案如下所示:

进入到以下目录下:

python 复制代码
miniconda3/envs/GraphRAG_0_3_6/lib/python3.11/site-packages/graphrag/index/emit

修改parquet_table_emitter.py 文件:
由:

python 复制代码
# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License

"""ParquetTableEmitter module."""

import logging
import traceback

import pandas as pd
from pyarrow.lib import ArrowInvalid, ArrowTypeError

from graphrag.index.storage import PipelineStorage
from graphrag.index.typing import ErrorHandlerFn

from .table_emitter import TableEmitter

log = logging.getLogger(__name__)


class ParquetTableEmitter(TableEmitter):
    """ParquetTableEmitter class."""

    _storage: PipelineStorage
    _on_error: ErrorHandlerFn

    def __init__(
        self,
        storage: PipelineStorage,
        on_error: ErrorHandlerFn,
    ):
        """Create a new Parquet Table Emitter."""
        self._storage = storage
        self._on_error = on_error

    async def emit(self, name: str, data: pd.DataFrame) -> None:
        """Emit a dataframe to storage."""
        filename = f"{name}.parquet"
        log.info("emitting parquet table %s", filename)
        try:
            await self._storage.set(filename, data.to_parquet())
        except ArrowTypeError as e:
            log.exception("Error while emitting parquet table")
            self._on_error(
                e,
                traceback.format_exc(),
                None,
            )
        except ArrowInvalid as e:
            log.exception("Error while emitting parquet table")
            self._on_error(
                e,
                traceback.format_exc(),
                None,
            )

改为如下:

python 复制代码
# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License

"""ParquetTableEmitter module."""

import logging,shutil
import traceback

import pandas as pd
from pyarrow.lib import ArrowInvalid, ArrowTypeError

from graphrag.index.storage import PipelineStorage
from graphrag.index.typing import ErrorHandlerFn

from .table_emitter import TableEmitter

log = logging.getLogger(__name__)


class ParquetTableEmitter(TableEmitter):
    """ParquetTableEmitter class."""

    _storage: PipelineStorage
    _on_error: ErrorHandlerFn

    def __init__(
        self,
        storage: PipelineStorage,
        on_error: ErrorHandlerFn,
    ):
        """Create a new Parquet Table Emitter."""
        self._storage = storage
        self._on_error = on_error

    async def emit(self, name: str, data: pd.DataFrame) -> None:
        """Emit a dataframe to storage."""
        filename = f"{name}.parquet"
        log.info("emitting parquet table %s", filename)
        try:
            open('./buf.csv','w+',encoding='UTF-8')
            data.to_csv('./buf.csv',encoding='UTF-8')
            data=pd.read_csv('./buf.csv',encoding='UTF-8')
            data['community']=data['community'].astype(str)
            await self._storage.set(filename, data.to_parquet())
            shutil.rmtree('./buf.csv')
        except ArrowTypeError as e:
            log.exception("Error while emitting parquet table")
            self._on_error(
                e,
                traceback.format_exc(),
                None,
            )
        except ArrowInvalid as e:
            log.exception("Error while emitting parquet table")
            self._on_error(
                e,
                traceback.format_exc(),
                None,
            )

上述修改完毕后,在项目根目录下执行以下语句:

python 复制代码
# 开始索引生成
python -m graphrag.index --root ./ragtest
相关推荐
加瓦点灯8 分钟前
Spring AI:让大模型更好用的“桥梁”
后端
李九四26 分钟前
章节9:支持连续的加减法
后端
洛卡卡了28 分钟前
人工顶不住,机审又烧钱,我只能硬着头皮上
后端·面试·架构
不枯石29 分钟前
Python实现RANSAC进行点云直线、平面、曲面、圆、球体和圆柱拟合
python·计算机视觉
Java水解39 分钟前
Spring Boot 事务详解
spring boot·后端
gauch39 分钟前
vscode 调试 Go 的配置解释(photoprism / Docker / 远程调试 / Delve)
后端·ai编程·visual studio code
站大爷IP1 小时前
Python Lambda:从入门到实战的轻量级函数指南
python
深盾安全1 小时前
Python 装饰器精要
python
站大爷IP1 小时前
Python爬虫基本原理与HTTP协议详解:从入门到实践
python
山烛1 小时前
深度学习:卷积神经网络(CNN)
图像处理·人工智能·python·深度学习·cnn·卷积神经网络