机器学习笔记

目录

决策树模型

[决策树 Decision Tree](#决策树 Decision Tree)

[随机森林 Random Forest](#随机森林 Random Forest)

[梯度提升决策树 Gradient Boosting Decision Trees](#梯度提升决策树 Gradient Boosting Decision Trees)

线性模型

回归

分类

[Softmax Regression](#Softmax Regression)


决策树模型

决策树 Decision Tree

用于分类和回归,通过一系列判断得到最终的结果。

优点:可解释;既能处理数值也能处理特征分类

缺点:不稳定,噪声的影响大(集成学习可以改进);过拟合;不易并行计算;

随机森林 Random Forest

森林:独立地训练几棵决策树,综合几棵决策树的结果来提高结果的稳定性。

随机:1.训练集使用随机采样的方法,如数据集D={1,2,3},训练集A={1,2,3},B={1,1,3};

2.随机选取部分特征,比如确定一个西瓜好不好吃需要10个特征,我只随机拿5个特征用来训练决策树,从这5个特征中找最优划分特征。

梯度提升决策树 Gradient Boosting Decision Trees

按照顺序来训练多棵决策树;首先训练一棵树,然后用这棵树的结果和实际结果之间的残差来训练下一棵树,相当于一直训练新的树来修正之前的树的结果,最后所有树的结果相加得到最终结果。

线性模型

回归

目标:学习使得均方误差最小。

分类

使用得到一系列类别的置信度,结果取置信度最大的类别。

目标:使均方误差最小。

问题:我们使结果能够足够明显的被识别出来就行了,不必过于关注别的类别,而这个方法让均方误差最小,相当于想训练一个模型使得正确结果的预测结果就是1,错误结果的预测结果就是0,没必要。

Softmax Regression

标签向量,其中表示真实的类别是第i类,否则为0。

设模型的输出是分数,用表示,softmax函数把这些分数转化为概率

目标:最小化是指模型预测出的正确的类别的概率。正确类别的概率越接近一越好。

小批量随机梯度下降

几乎可以求解除决策树之外所有的算法模型。

相关推荐
ayingmeizi1632 分钟前
电子及通信设备制造业CRM解决方案,AI赋能线索+商机+销售+服务,助力企业降本增效与价值升级
人工智能·crm·数智化
也许是_4 分钟前
大模型应用技术之 Spring AI 2.0 变更说明
java·人工智能·spring
黑客思维者15 分钟前
机器学习006:监督学习【回归算法】(概论)--教AI从历史中预测未来
人工智能·学习·机器学习·监督学习·回归算法
高洁0119 分钟前
DNN案例一步步构建深层神经网络(二)
人工智能·python·深度学习·算法·机器学习
qq_4182478843 分钟前
Linux上部署conda环境
linux·运维·神经网络·机器学习·conda
合方圆~小文1 小时前
4G定焦球机摄像头综合介绍产品指南
数据结构·数据库·人工智能
Coding茶水间1 小时前
基于深度学习的螺栓螺母检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
yiersansiwu123d1 小时前
AI全球善治的困境突破与中国方案的实践路径
人工智能
老蒋新思维1 小时前
反脆弱性设计:创始人IP与AI智能体如何构建愈动荡愈强大的知识商业|创客匠人
人工智能·网络协议·tcp/ip·算法·机器学习·创始人ip·创客匠人