机器学习笔记

目录

决策树模型

[决策树 Decision Tree](#决策树 Decision Tree)

[随机森林 Random Forest](#随机森林 Random Forest)

[梯度提升决策树 Gradient Boosting Decision Trees](#梯度提升决策树 Gradient Boosting Decision Trees)

线性模型

回归

分类

[Softmax Regression](#Softmax Regression)


决策树模型

决策树 Decision Tree

用于分类和回归,通过一系列判断得到最终的结果。

优点:可解释;既能处理数值也能处理特征分类

缺点:不稳定,噪声的影响大(集成学习可以改进);过拟合;不易并行计算;

随机森林 Random Forest

森林:独立地训练几棵决策树,综合几棵决策树的结果来提高结果的稳定性。

随机:1.训练集使用随机采样的方法,如数据集D={1,2,3},训练集A={1,2,3},B={1,1,3};

2.随机选取部分特征,比如确定一个西瓜好不好吃需要10个特征,我只随机拿5个特征用来训练决策树,从这5个特征中找最优划分特征。

梯度提升决策树 Gradient Boosting Decision Trees

按照顺序来训练多棵决策树;首先训练一棵树,然后用这棵树的结果和实际结果之间的残差来训练下一棵树,相当于一直训练新的树来修正之前的树的结果,最后所有树的结果相加得到最终结果。

线性模型

回归

目标:学习使得均方误差最小。

分类

使用得到一系列类别的置信度,结果取置信度最大的类别。

目标:使均方误差最小。

问题:我们使结果能够足够明显的被识别出来就行了,不必过于关注别的类别,而这个方法让均方误差最小,相当于想训练一个模型使得正确结果的预测结果就是1,错误结果的预测结果就是0,没必要。

Softmax Regression

标签向量,其中表示真实的类别是第i类,否则为0。

设模型的输出是分数,用表示,softmax函数把这些分数转化为概率

目标:最小化是指模型预测出的正确的类别的概率。正确类别的概率越接近一越好。

小批量随机梯度下降

几乎可以求解除决策树之外所有的算法模型。

相关推荐
kisshuan123961 小时前
【深度学习】使用RetinaNet+X101-32x4d_FPN_GHM模型实现茶芽检测与识别_1
人工智能·深度学习
Learn Beyond Limits1 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
崔庆才丨静觅2 小时前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
qq_356448372 小时前
机器学习基本概念与梯度下降
人工智能
水如烟3 小时前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿3 小时前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——3 小时前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
十二AI编程4 小时前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt
CCC:CarCrazeCurator4 小时前
从 APA 到 AVP:汽车自动泊车系统技术演进与产业发展深度研究
人工智能