机器学习笔记

目录

决策树模型

[决策树 Decision Tree](#决策树 Decision Tree)

[随机森林 Random Forest](#随机森林 Random Forest)

[梯度提升决策树 Gradient Boosting Decision Trees](#梯度提升决策树 Gradient Boosting Decision Trees)

线性模型

回归

分类

[Softmax Regression](#Softmax Regression)


决策树模型

决策树 Decision Tree

用于分类和回归,通过一系列判断得到最终的结果。

优点:可解释;既能处理数值也能处理特征分类

缺点:不稳定,噪声的影响大(集成学习可以改进);过拟合;不易并行计算;

随机森林 Random Forest

森林:独立地训练几棵决策树,综合几棵决策树的结果来提高结果的稳定性。

随机:1.训练集使用随机采样的方法,如数据集D={1,2,3},训练集A={1,2,3},B={1,1,3};

2.随机选取部分特征,比如确定一个西瓜好不好吃需要10个特征,我只随机拿5个特征用来训练决策树,从这5个特征中找最优划分特征。

梯度提升决策树 Gradient Boosting Decision Trees

按照顺序来训练多棵决策树;首先训练一棵树,然后用这棵树的结果和实际结果之间的残差来训练下一棵树,相当于一直训练新的树来修正之前的树的结果,最后所有树的结果相加得到最终结果。

线性模型

回归

目标:学习使得均方误差最小。

分类

使用得到一系列类别的置信度,结果取置信度最大的类别。

目标:使均方误差最小。

问题:我们使结果能够足够明显的被识别出来就行了,不必过于关注别的类别,而这个方法让均方误差最小,相当于想训练一个模型使得正确结果的预测结果就是1,错误结果的预测结果就是0,没必要。

Softmax Regression

标签向量,其中表示真实的类别是第i类,否则为0。

设模型的输出是分数,用表示,softmax函数把这些分数转化为概率

目标:最小化是指模型预测出的正确的类别的概率。正确类别的概率越接近一越好。

小批量随机梯度下降

几乎可以求解除决策树之外所有的算法模型。

相关推荐
33三 三like8 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a8 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者9 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗9 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_10 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信10 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_8362358610 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs10 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
董董灿是个攻城狮10 小时前
AI 视觉连载2:灰度图
人工智能