Day19_【机器学习—线性回归 (3)—回归模型评估方法】

六、回归模型评估方法(MAE、MSE、RMSE)

线性回归模型评估中,MAE、MSE和RMSE是三种常用的指标,它们各自从不同的角度衡量预测值与真实值之间的差距。

1. 平均绝对误差(Mean Absolute Error, MAE)

  • 定义:MAE计算的是预测值与真实值之间绝对差值的平均值。
  • 公式

​​​​​​​ ​​​​​​​

其中,nn为样本数量,yiyi​为第 ii个样本的真实值,y^iy^​i​为对应的预测值。

  • 特点:MAE对异常值相对不敏感,因为它使用绝对值来计算误差,不会因为少数大误差而过分影响整体结果。

  • Python实现

    from sklearn.metrics import mean_absolute_error
    print(mean_absolute_error(y_test, y_predict))

2. 均方误差(Mean Squared Error, MSE)

  • 定义:MSE计算的是预测值与真实值之间差值平方的平均值。
  • 公式

特点:MSE对异常值非常敏感,因为误差被平方了,所以较大的误差会被放大,这使得MSE在数据集中有异常值时可能不是最佳选择。

  • Python实现

    from sklearn.metrics import mean_squared_error
    print(mean_squared_error(y_test, y_predict))

3. 均方根误差(Root Mean Squared Error, RMSE)

  • 定义:RMSE是MSE的平方根,它将MSE转换回与原始数据相同的单位,从而更直观地理解误差大小。
  • 公式
  • 特点:RMSE同样对异常值敏感,但相比于MSE,它提供了更易于解释的误差度量,因为它的单位与原始数据相同。在某些情况下,RMSE比MSE更有用,尤其是在需要直接比较预测值与真实值差异的场景中。

  • Python实现

    from sklearn.metrics import root_mean_squared_error
    print(root_mean_squared_error(y_test, y_predict))

相关推荐
HyperAI超神经2 分钟前
【vLLM 学习】vLLM TPU 分析
开发语言·人工智能·python·学习·大语言模型·vllm·gpu编程
AI营销实验室2 分钟前
AI CRM系统线索打分,原圈科技引爆销售增长
人工智能·科技
~~李木子~~5 分钟前
基于 MovieLens-100K 数据集的推荐算法设计与实现
算法·机器学习·推荐算法
爱笑的眼睛115 分钟前
FastAPI 请求验证:超越 Pydantic 基础,构建企业级验证体系
java·人工智能·python·ai
拉姆哥的小屋5 分钟前
基于深度学习的瞬变电磁法裂缝参数智能反演研究
人工智能·python·深度学习
木头左6 分钟前
基于LSTM的多维特征融合量化交易策略实现
人工智能·rnn·lstm
Maynor9967 分钟前
全面体验 Grok API 中转站(2025 · Grok 4 系列最新版)
人工智能
铅笔侠_小龙虾9 分钟前
深度学习--阶段总结(1)
人工智能·深度学习·ai·回归
钱彬 (Qian Bin)13 分钟前
项目实践11—全球证件智能识别系统(切换为PostgreSQL数据库)
人工智能·qt·fastapi
Heyxy13 分钟前
RobustMerge—— 无训练的 PEFT 模型融合方法,从低秩分解视角揭示方向鲁棒性对 PEFT 融合的作用
人工智能·深度学习·机器学习·大模型