01 神经网络简介

1 单个神经元如何感知信息

1.1 激活函数

感知信息的基本条件是对不同的输入能够区分
σ(x)={1x≥T0x<T, \sigma(x)=\left\{\begin{array}{ll} 1 & x \geq T \\ 0 & x<T \end{array},\right. σ(x)={10x≥Tx<T,

以身高提取器来理解激活函数σ(x)\sigma(x)σ(x):

  • 当小于160cm,信号接收器接收到反射信号;
  • 当大于等于160cm,信号接收器接收不到反射信号。

1.2 权重

一个预测股票升降的例子:假设A 有两个朋友,B 和C。A 自己有一个判断值a0a_0a0,同时接收到了B和C的信息,分别记为b和c。因此,A接收到的信息为:
a=λ1b+λ2c+a0 a = \lambda_1b+ \lambda_2c + a_0 a=λ1b+λ2c+a0

如果B是一个经济学家,而C 是一个普通人,则有,λ1λ_1λ1>λ2λ_2λ2>0。

我们可以把这类收集信息的方式推广到一般的形式:

w1x1+⋯+wdxd+b=(w1,⋯ ,wd)⋅(x1,⋯ ,xd)+b=wTx+b \begin{array}{l} w_{1} x_{1}+\cdots+w_{d} x_{d}+b \\ =\left(w_{1}, \cdots, w_{d}\right) \cdot\left(x_{1}, \cdots, x_{d}\right)+b \\ =\boldsymbol{w}^{T} \boldsymbol{x}+b \end{array} w1x1+⋯+wdxd+b=(w1,⋯,wd)⋅(x1,⋯,xd)+b=wTx+b

单个神经元的输出为:
σ(wTx+b) \sigma(\boldsymbol{w}^{T} \boldsymbol{x}+b) σ(wTx+b)
σ(⋅)\sigma(\cdot)σ(⋅)通常称为激活函数。

一个预测股票升降的例子:假设A 有两个朋友,B 和C。A 自己有一个判断值a0a_0a0,同时接收到了B和C的信息,分别记为b和c。因此,A接收到的信息为:
a=λ1b+λ2c+a0 a = \lambda_1b+ \lambda_2c + a_0 a=λ1b+λ2c+a0

如果B是一个经济学家,而C 是一个普通人,则有,λ1λ_1λ1>λ2λ_2λ2>0。

2 单层神经网络

简单地把多个神经元堆在一起,我们就可以得到单层神经网络:

神经网络的高维输出:

参数的矩阵形式:

∘ 表示对每个元素作用:

2.1 设计功能

考虑输入是两维的,x1,x2∈{0,1}2x_1,x_2∈\{0,1\}^2x1,x2∈{0,1}2:
σ(x1+x2)={1x1+x2≥T0x1+x2<T, \sigma(x_1 + x_2)=\left\{\begin{array}{ll} 1 & x_1 + x_2 \geq T \\ 0 & x_1 + x_2<T \end{array},\right. σ(x1+x2)={10x1+x2≥Tx1+x2<T,

  • AND: T=2T=2T=2;即11为1,00,01,10都是0;
  • Or: T=1T=1T=1;即00为0,01,10,11都是1;
  • Not: T=0T=0T=0;NOT 运算是一个一元逻辑运算(只有一个输入),因此直接使用这个函数表示 NOT 并不合适,将函数改造为:
    σ(w⋅x+b)={1w⋅x+b≥T0w⋅x+b<T, \sigma(w \cdot x + b)=\left\{\begin{array}{ll} 1 & w \cdot x + b \geq T \\ 0 & w \cdot x + b <T \end{array},\right. σ(w⋅x+b)={10w⋅x+b≥Tw⋅x+b<T,
    对于 NOT 运算,我们需要满足:
  • 当 (x=0)(x = 0)(x=0) 时,输出 (y=1)(y = 1)(y=1),
  • 当 (x=1)(x = 1)(x=1) 时,输出 (y=0)(y = 0)(y=0).

通过选择合适的权重 (w) 和偏置 (b),可以实现这一点。一个常见的设置是:

  • 权重 (w=−1)(w = -1)(w=−1),
  • 偏置 (b=0.5)(b = 0.5)(b=0.5).

验证:

  • 当 (x=0):(w⋅x+b=−1⋅0+0.5=0.5≥0)(x = 0): (w \cdot x + b = -1 \cdot 0 + 0.5 = 0.5 \geq 0)(x=0):(w⋅x+b=−1⋅0+0.5=0.5≥0),所以输出 (y=1)(y = 1)(y=1).
  • 当 (x=1):(w⋅x+b=−1⋅1+0.5=−0.5<0)(x = 1): (w \cdot x + b = -1 \cdot 1 + 0.5 = -0.5 < 0)(x=1):(w⋅x+b=−1⋅1+0.5=−0.5<0),所以输出 (y=0)(y = 0)(y=0).

2.2 局限性

单层神经网络是无法做好XOR问题:

3 多层神经网络

多层神经网络是在一层神经网络的基础上堆叠起来的。

3.1 解XOR问题

  • 假设,y=σ(h1+h22)y=σ(\frac{ℎ_1+ℎ_2}{2})y=σ(2h1+h2)
  • 代入(0,0), (1,1),则y=σ(1)=1y=σ(1)=1y=σ(1)=1。
  • 代入(1,0), (0,1),则y=σ(1/2)=0y=σ(1/2)=0y=σ(1/2)=0。

3.2 性质

  • 两层网络具有万有逼近定理(Cybenko 1989):激活函数是非多项式的非线性函数
  • 多项式函数是否有万有逼近定理?
  • 为什么激活函数不能是多项式函数?
  • 万有逼近定理对实际问题有什么帮助?
  • 万有逼近定理是否足够让我们使用神经网络?
  • 多层神经网络只是众多机器学习方法中的一种!
相关推荐
编程武士3 小时前
从50ms到30ms:YOLOv10部署中图像预处理的性能优化实践
人工智能·python·yolo·性能优化
max5006003 小时前
基于Meta Llama的二语习得学习者行为预测计算模型
人工智能·算法·机器学习·分类·数据挖掘·llama
mCell4 小时前
长期以来我对 LLM 的误解
深度学习·llm·ollama
月疯4 小时前
OPENCV摄像头读取视频
人工智能·opencv·音视频
极客天成ScaleFlash4 小时前
极客天成让统一存储从云原生‘进化’到 AI 原生: 不是版本升级,而是基因重组
人工智能·云原生
王哥儿聊AI4 小时前
Lynx:新一代个性化视频生成模型,单图即可生成视频,重新定义身份一致性与视觉质量
人工智能·算法·安全·机器学习·音视频·软件工程
_pinnacle_5 小时前
打开神经网络的黑箱(三) 卷积神经网络(CNN)的模型逻辑
人工智能·神经网络·cnn·黑箱·卷积网络
Ada's5 小时前
深度学习在自动驾驶上应用(二)
人工智能·深度学习·自动驾驶
张较瘦_5 小时前
[论文阅读] 人工智能 + 软件工程 | 从“人工扒日志”到“AI自动诊断”:LogCoT框架的3大核心创新
论文阅读·人工智能·软件工程
lisw055 小时前
连接蓝牙时“无媒体信号”怎么办?
人工智能·机器学习·微服务