【面试题】介绍一下BERT和GPT的训练方式区别?

BERT(双向编码器):

预训练任务:

  • 掩码语言模型(MLM) :随机掩盖15%的token,其中:
    • 80%替换为[MASK]
    • 10%替换为随机token
    • 10%保持原样
  • 下一句预测(NSP):判断两个句子是否连续(后续版本已移除)

训练特点:

  • 使用双向Transformer编码器
  • 同时利用左右上下文信息
  • 适合理解类任务:分类、标注、相似度计算

GPT(自回归解码器):

预训练任务:

  • 因果语言模型(CLM):给定前文预测下一个token
  • 只能利用左侧上下文,无法看到右侧信息

训练特点:

  • 使用单向Transformer解码器(带掩码注意力)
  • 通过next token prediction训练
  • 适合生成类任务:文本生成、对话、创作

关键差异:

  • BERT:双向理解,更适合文本表示学习
  • GPT:单向生成,更适合序列生成任务
  • 现代大模型(如GPT-3/4)通过scale up和指令微调弥补了单向性的限制
相关推荐
模型时代几秒前
Anthropic明确拒绝在Claude中加入广告功能
人工智能·microsoft
夕小瑶4 分钟前
OpenClaw、Moltbook爆火,算力如何48小时内扩到1900张卡
人工智能
一枕眠秋雨>o<6 分钟前
透视算力:cann-tools如何让AI性能调优从玄学走向科学
人工智能
那个村的李富贵20 分钟前
昇腾CANN跨行业实战:五大新领域AI落地案例深度解析
人工智能·aigc·cann
集简云-软件连接神器23 分钟前
技术实战:集简云语聚AI实现小红书私信接入AI大模型全流程解析
人工智能·小红书·ai客服
松☆23 分钟前
深入理解CANN:面向AI加速的异构计算架构
人工智能·架构
rainbow72424423 分钟前
无基础学AI的入门核心,从基础工具和理论开始学
人工智能
子榆.28 分钟前
CANN 与主流 AI 框架集成:从 PyTorch/TensorFlow 到高效推理的无缝迁移指南
人工智能·pytorch·tensorflow
七月稻草人29 分钟前
CANN生态ops-nn:AIGC的神经网络算子加速内核
人工智能·神经网络·aigc
2501_9248787330 分钟前
数据智能驱动进化:AdAgent 多触点归因与自我学习机制详解
人工智能·逻辑回归·动态规划