一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi

现有金融 RAG 的两大痛点 :一是多模态数据(文本 / 表格 / 图表)的统一处理,二是通用金融知识与公司特异性需求的平衡。金融领域的问答(如分析 SEC 10-K 报告中的供应链风险、季度毛利率)需要 "精准结合多模态数据、兼顾通用规则与公司特性、快速响应高频查询与实时需求。

围绕金融领域多模态问答RAG框架VeritasFi展开,核心是解决"多模态数据处理"与"通用金融知识-公司特异性平衡"两大痛点,VeritasFi是端到端多层级RAG框架,针对金融场景(如SEC文件分析),通过"预处理-检索-重排序"流水线,实现问答,性能超越GraphRAG、LightRAG等基线。

  1. 三大核心模块
    • CAKC(上下文感知知识处理) :作为数据底座(文档解析),将"文本+表格+图表"多模态文档转为结构化知识库------先拆分文档并通过GPT-4o统一非文本模态为文本,再经去重、共指消解、元数据生成增强语义,同时构建高频记忆库(缓存定量查询答案)并完成索引。

    • THR(三方混合检索):检索核心,先预处理查询(归一化、分解子查询并路由),再并行三条路径:多路径检索(BM25+Dense+元数据,深度分析文档)、高频记忆库(快速响应定量查询)、工具调用(获取实时数据,如股价),确保覆盖全面需求。

    • DAR(域到实体两阶段重排序):优化检索结果,先训通用金融重排序模型(用抽象数据掩盖实体特异性),再通过自动化标注数据微调为公司专用模型,用对比损失提升相关性判断,平衡泛化性与特异性。

通过多模态统一处理、三方并行检索、两阶段重排序,实现"高事实正确性+低延迟+强公司适配性",在FinanceBench、FinQA及内部数据集(Lotus、Zeekr)上表现优异。

实验性能

参考文献:VeritasFi: An Adaptable, Multi-tiered RAG Framework for Multi-modal Financial Question Answering,https://arxiv.org/pdf/2510.10828v1

代码暂未开源

相关推荐
码农阿树3 小时前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
伏小白白白4 小时前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
应用市场4 小时前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉
星域智链5 小时前
宠物智能用品:当毛孩子遇上 AI,是便利还是过度?
人工智能·科技·学习·宠物
taxunjishu5 小时前
DeviceNet 转 MODBUS TCP罗克韦尔 ControlLogix PLC 与上位机在汽车零部件涂装生产线漆膜厚度精准控制的通讯配置案例
人工智能·区块链·工业物联网·工业自动化·总线协议
说私域5 小时前
基于多模态AI技术的传统行业智能化升级路径研究——以开源AI大模型、AI智能名片与S2B2C商城小程序为例
人工智能·小程序·开源
囚生CY5 小时前
【速写】优化的深度与广度(Adam & Moun)
人工智能·python·算法
hqyjzsb5 小时前
2025年市场岗位能力重构与跨领域转型路径分析
c语言·人工智能·信息可视化·重构·媒体·改行学it·caie
爱学习的uu5 小时前
CURSOR最新使用指南及使用思路
人工智能·笔记·python·软件工程