一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi

现有金融 RAG 的两大痛点 :一是多模态数据(文本 / 表格 / 图表)的统一处理,二是通用金融知识与公司特异性需求的平衡。金融领域的问答(如分析 SEC 10-K 报告中的供应链风险、季度毛利率)需要 "精准结合多模态数据、兼顾通用规则与公司特性、快速响应高频查询与实时需求。

围绕金融领域多模态问答RAG框架VeritasFi展开,核心是解决"多模态数据处理"与"通用金融知识-公司特异性平衡"两大痛点,VeritasFi是端到端多层级RAG框架,针对金融场景(如SEC文件分析),通过"预处理-检索-重排序"流水线,实现问答,性能超越GraphRAG、LightRAG等基线。

  1. 三大核心模块
    • CAKC(上下文感知知识处理) :作为数据底座(文档解析),将"文本+表格+图表"多模态文档转为结构化知识库------先拆分文档并通过GPT-4o统一非文本模态为文本,再经去重、共指消解、元数据生成增强语义,同时构建高频记忆库(缓存定量查询答案)并完成索引。

    • THR(三方混合检索):检索核心,先预处理查询(归一化、分解子查询并路由),再并行三条路径:多路径检索(BM25+Dense+元数据,深度分析文档)、高频记忆库(快速响应定量查询)、工具调用(获取实时数据,如股价),确保覆盖全面需求。

    • DAR(域到实体两阶段重排序):优化检索结果,先训通用金融重排序模型(用抽象数据掩盖实体特异性),再通过自动化标注数据微调为公司专用模型,用对比损失提升相关性判断,平衡泛化性与特异性。

通过多模态统一处理、三方并行检索、两阶段重排序,实现"高事实正确性+低延迟+强公司适配性",在FinanceBench、FinQA及内部数据集(Lotus、Zeekr)上表现优异。

实验性能

参考文献:VeritasFi: An Adaptable, Multi-tiered RAG Framework for Multi-modal Financial Question Answering,https://arxiv.org/pdf/2510.10828v1

代码暂未开源

相关推荐
小鸡吃米…5 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫6 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)6 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan6 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维6 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS6 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd6 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟7 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然7 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~7 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1