一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi

现有金融 RAG 的两大痛点 :一是多模态数据(文本 / 表格 / 图表)的统一处理,二是通用金融知识与公司特异性需求的平衡。金融领域的问答(如分析 SEC 10-K 报告中的供应链风险、季度毛利率)需要 "精准结合多模态数据、兼顾通用规则与公司特性、快速响应高频查询与实时需求。

围绕金融领域多模态问答RAG框架VeritasFi展开,核心是解决"多模态数据处理"与"通用金融知识-公司特异性平衡"两大痛点,VeritasFi是端到端多层级RAG框架,针对金融场景(如SEC文件分析),通过"预处理-检索-重排序"流水线,实现问答,性能超越GraphRAG、LightRAG等基线。

  1. 三大核心模块
    • CAKC(上下文感知知识处理) :作为数据底座(文档解析),将"文本+表格+图表"多模态文档转为结构化知识库------先拆分文档并通过GPT-4o统一非文本模态为文本,再经去重、共指消解、元数据生成增强语义,同时构建高频记忆库(缓存定量查询答案)并完成索引。

    • THR(三方混合检索):检索核心,先预处理查询(归一化、分解子查询并路由),再并行三条路径:多路径检索(BM25+Dense+元数据,深度分析文档)、高频记忆库(快速响应定量查询)、工具调用(获取实时数据,如股价),确保覆盖全面需求。

    • DAR(域到实体两阶段重排序):优化检索结果,先训通用金融重排序模型(用抽象数据掩盖实体特异性),再通过自动化标注数据微调为公司专用模型,用对比损失提升相关性判断,平衡泛化性与特异性。

通过多模态统一处理、三方并行检索、两阶段重排序,实现"高事实正确性+低延迟+强公司适配性",在FinanceBench、FinQA及内部数据集(Lotus、Zeekr)上表现优异。

实验性能

参考文献:VeritasFi: An Adaptable, Multi-tiered RAG Framework for Multi-modal Financial Question Answering,https://arxiv.org/pdf/2510.10828v1

代码暂未开源

相关推荐
瑞华丽PLM5 分钟前
国产PLM软件源头厂家的AI技术应用与智能化升级
人工智能·plm·国产plm·瑞华丽plm·瑞华丽
xixixi7777714 分钟前
基于零信任架构的通信
大数据·人工智能·架构·零信任·通信·个人隐私
玄同76517 分钟前
LangChain v1.0+ Prompt 模板完全指南:构建精准可控的大模型交互
人工智能·语言模型·自然语言处理·langchain·nlp·交互·知识图谱
Ryan老房21 分钟前
开源vs商业-数据标注工具的选择困境
人工智能·yolo·目标检测·计算机视觉·ai
取个鸣字真的难27 分钟前
Obsidian + CC:用AI 打造知识管理系统
人工智能·产品运营
困死,根本不会43 分钟前
OpenCV摄像头实时处理:基于 HSV 颜色空间的摄像头实时颜色筛选工具
人工智能·opencv·计算机视觉
Shirley~~1 小时前
Vue-skills的中文文档
前端·人工智能
华大哥1 小时前
AI大模型基于LangChain 进行RAG与Agent智能体开发
人工智能·langchain
Sagittarius_A*1 小时前
角点检测:Harris 与 Shi-Tomasi原理拆解【计算机视觉】
图像处理·人工智能·python·opencv·计算机视觉
困死,根本不会1 小时前
OpenCV实时摄像头处理:曝光调节、降噪与二值化实战
人工智能·opencv·计算机视觉