一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi

现有金融 RAG 的两大痛点 :一是多模态数据(文本 / 表格 / 图表)的统一处理,二是通用金融知识与公司特异性需求的平衡。金融领域的问答(如分析 SEC 10-K 报告中的供应链风险、季度毛利率)需要 "精准结合多模态数据、兼顾通用规则与公司特性、快速响应高频查询与实时需求。

围绕金融领域多模态问答RAG框架VeritasFi展开,核心是解决"多模态数据处理"与"通用金融知识-公司特异性平衡"两大痛点,VeritasFi是端到端多层级RAG框架,针对金融场景(如SEC文件分析),通过"预处理-检索-重排序"流水线,实现问答,性能超越GraphRAG、LightRAG等基线。

  1. 三大核心模块
    • CAKC(上下文感知知识处理) :作为数据底座(文档解析),将"文本+表格+图表"多模态文档转为结构化知识库------先拆分文档并通过GPT-4o统一非文本模态为文本,再经去重、共指消解、元数据生成增强语义,同时构建高频记忆库(缓存定量查询答案)并完成索引。

    • THR(三方混合检索):检索核心,先预处理查询(归一化、分解子查询并路由),再并行三条路径:多路径检索(BM25+Dense+元数据,深度分析文档)、高频记忆库(快速响应定量查询)、工具调用(获取实时数据,如股价),确保覆盖全面需求。

    • DAR(域到实体两阶段重排序):优化检索结果,先训通用金融重排序模型(用抽象数据掩盖实体特异性),再通过自动化标注数据微调为公司专用模型,用对比损失提升相关性判断,平衡泛化性与特异性。

通过多模态统一处理、三方并行检索、两阶段重排序,实现"高事实正确性+低延迟+强公司适配性",在FinanceBench、FinQA及内部数据集(Lotus、Zeekr)上表现优异。

实验性能

参考文献:VeritasFi: An Adaptable, Multi-tiered RAG Framework for Multi-modal Financial Question Answering,https://arxiv.org/pdf/2510.10828v1

代码暂未开源

相关推荐
赵得C13 分钟前
智能体的范式革命:华为全栈技术链驱动下一代AI Agent
人工智能·华为·ai·ai编程
嵌入式-老费1 小时前
自己动手写深度学习框架(感知机)
人工智能·深度学习
化作星辰1 小时前
使用 PyTorch来构建线性回归的实现
人工智能·pytorch·深度学习
mm-q29152227291 小时前
【天野学院5期】 第5期易语言半内存辅助培训班,主讲游戏——手游:仙剑奇侠传4,端游:神魔大陆2
人工智能·算法·游戏
谢景行^顾1 小时前
深度学习-损失函数
人工智能·深度学习
xier_ran1 小时前
关键词解释: LoRA(Low-Rank Adaptation)详解
人工智能
黄焖鸡能干四碗1 小时前
信息安全管理制度(Word)
大数据·数据库·人工智能·智慧城市·规格说明书
paopao_wu1 小时前
DeepSeek-OCR实战(01):基础运行环境搭建-Ubuntu
linux·人工智能·ubuntu·ai·ocr
Altair澳汰尔1 小时前
新闻速递丨Altair RapidMiner 数据分析和 AI 平台助力企业加速智能升级:扩展智能体 AI 及分析生态系统
人工智能·ai·数据分析·仿真·cae·rapidminer·数据自动化
oil欧哟2 小时前
GitHub星标3万,OpenAI 官方支持——深度解读 AI Agent 连接协议的行业标准 MCP
人工智能·github