PINN驱动的高阶偏微分方程求解MATLAB代码

MATLAB 代码实现了一个基于物理信息神经网络(Physics-Informed Neural Network, PINN)的高阶偏微分方程(梁振动方程)求解器。以下是详细分析:


一、主要功能

main.m 是主程序,负责:

  • 设置问题参数(梁长 L、时间 T、训练点数量等);
  • 生成训练数据(PDE 残差点、初始条件点、边界条件点);
  • 构建神经网络结构;
  • 训练神经网络;
  • 预测解并可视化结果(与解析解比较、误差分析)。

modelLoss.m 是自定义损失函数,用于:

  • 计算 PDE 残差、初始条件残差、边界条件残差;
  • 使用自动微分(dlgradient)计算高阶导数;
  • 加权组合各项损失,并返回总损失和梯度。

二、逻辑关联

  • main.m 调用 modelLoss.m 在训练过程中计算损失和梯度。
  • modelLoss.m 中定义的损失函数包含了物理方程(PDE)、初始条件(IC)和边界条件(BC)的约束,确保神经网络学习到物理规律。

三、算法步骤

  1. 数据生成:在空间和时间域内随机采样点,包括内部点、初始时刻点、边界点。
  2. 网络构建:使用全连接层 + tanh 激活函数构建深层神经网络。
  3. 训练循环
    • 使用 Adam 优化器;
    • 动态衰减学习率;
    • 每轮计算损失(PDE + IC + BC)并反向传播。
  4. 预测与评估
    • 在测试网格上预测解;
    • 与解析解比较,计算误差;
    • 可视化结果和训练过程。

四、技术路线

  • PINN 方法:将偏微分方程作为正则项嵌入神经网络损失函数中。
  • 自动微分 :使用 dlgradient 计算高阶导数(如 ( u_{tt} ), ( u_{xxxx} ))。
  • 加权多目标损失:为 IC 和 BC 分配更高权重,增强约束。
  • 动态学习率衰减:提高训练稳定性。

五、公式原理


六、参数设定

参数 含义
L 梁长度 1
T 时间长度 1
numPDE PDE 残差点数 1000
numIC 初始条件点数 200
numBC 边界条件点数 300
numEpochs 训练轮数 1000
initialLR 初始学习率 0.001
decayRate 学习率衰减率 0.95
decaySteps 衰减步长 100

七、运行环境

  • 软件:MATLAB(需安装 Deep Learning Toolbox)
  • 硬件:支持 CPU/GPU 训练(若可用,可加速)
  • 版本 :建议 R2021a 或更高版本(因使用 dlarraydlnetwork

总结

该代码使用 PINN 方法求解梁振动方程,通过将物理约束嵌入神经网络训练中,避免了传统数值方法对网格的依赖,适用于复杂边界/初始条件的问题。代码结构清晰,包含完整的训练、预测和可视化流程,适合作为 PINN 入门和实践案例。



完整代码私信回复PINN驱动的高阶偏微分方程求解MATLAB代码

相关推荐
cici158749 小时前
基于高光谱成像和偏最小二乘法(PLS)的苹果糖度检测MATLAB实现
算法·matlab·最小二乘法
Dev7z14 小时前
基于Matlab多目标粒子群优化的无人机三维路径规划与避障研究
开发语言·matlab·无人机
Evand J15 小时前
【MATLAB例程】2雷达二维目标跟踪滤波系统-UKF(无迹卡尔曼滤波)实现,目标匀速运动模型(带扰动)。附代码下载链接
开发语言·matlab·目标跟踪·滤波·卡尔曼滤波
kaikaile199519 小时前
基于MATLAB的直接序列扩频(DSSS)通信系统仿真实现
开发语言·matlab
guygg881 天前
Alpha稳定分布概率密度函数的MATLAB实现
开发语言·matlab
Dev7z2 天前
基于Matlab的数字基带通信系统仿真与性能分析
matlab·数字基带通信系统·单极性不归零码·双极性不归零码·单极性归零码·双极性归零码
机器学习之心2 天前
NGO-VMD北方苍鹰算法优化变分模态分解+皮尔逊系数+小波阈值降噪+信号重构,MATLAB代码
算法·matlab·重构·信号重构·ngo-vmd·皮尔逊系数·小波阈值降噪
简简单单做算法2 天前
基于球面透视投影模型的鱼眼图像校正算法matlab仿真
matlab·球面透视投影·鱼眼图像校正
fie88892 天前
基于MATLAB实现的Elman神经网络用于电力负载预测
神经网络·机器学习·matlab
fie88892 天前
基于MATLAB的狼群算法实现
开发语言·算法·matlab