2025计算机视觉新技术


  1. CLIP / BLIP-3 类「视觉-语言大模型」

    • 是什么:让网络自己学会"看图说话",zero-shot 就能分类、检测、检索。

    • 能干什么:不写训练代码,直接一句中文 prompt 就把商品图分成 500 类。

    • 落地难度:★☆☆(pip install open_clip_torch,CPU 也能跑)

    • 入口:https://github.com/mlfoundations/open_clip

  2. Segment Anything Model 2 (SAM-2)

    • 是什么:Meta 刚开源的"万能分割",视频里点一下即可追踪目标。

    • 能干什么:直播换背景、工业缺陷区域一键抠出,不用逐帧标注。

    • 落地难度:★☆☆(PyTorch 权重直接推理,1080Ti 可跑 720p)

    • 入口:https://github.com/facebookresearch/segment-anything-2

  3. YOLO-World / YOLOv9-Universal「开放词汇检测」

    • 是什么:YOLO 也能 zero-shot,输入"红色安全帽"就能检测没见过的东西。

    • 能干什么:工地摄像头今天想查"未戴绝缘手套",改行文本即可,不用重训。

    • 落地难度:★★☆(需 GPU 转 ONNX,边缘用 RKNN 量化)

    • 入口:https://github.com/AILab-CVC/YOLO-World

  4. 自监督 + 少样本工业缺陷检测(Diffusion + Memory Bank)

    • 是什么:用 5 张 OK 图就能学出"异常",无需缺陷样本。

    • 能干什么:手机背板划痕、布料脏点实时检,省掉千级人工标注。

    • 落地难度:★★☆(开源模型 + 10 行微调代码)

    • 入口:https://github.com/openvinotoolkit/anomalib

  5. 单目深度估计「Depth Anything V2」

    • 是什么:一张普通照片就生成 0-10 m 稠密深度图,误差 < 5%。

    • 能干什么:给 AR 导览、机器人避障当"廉价 LiDAR",成本 0 元。

    • 落地难度:★☆☆(pip install depth-anything,ONNX 仅 30 MB)

    • 入口:https://github.com/DepthAnything/Depth-Anything-V2

  6. 高光谱「伪」实时分析(RGB → 512-band 重建)

    • 是什么:AI 把普通相机 RGB 插值成 512 波段"超光谱",能看水分、糖分、药残。

    • 能干什么:果园无人机飞一圈,立刻出"糖度分布热图",无需 30 万高光谱相机。

    • 落地难度:★★★(需标定一次+GPU 推理,但硬件 0 额外成本)

    • 入口:https://github.com/StaRainJ/HyperRecon


好!

相关推荐
踏浪无痕17 分钟前
架构师如何学习 AI:三个月掌握核心能力的务实路径
人工智能·后端·程序员
闲看云起25 分钟前
大模型应用开发框架全景图
人工智能·语言模型·ai编程
CoovallyAIHub29 分钟前
工业视觉检测:多模态大模型的诱惑
深度学习·算法·计算机视觉
万行38 分钟前
机器学习&第三章
人工智能·python·机器学习·数学建模·概率论
木卫四科技41 分钟前
DocETL 入门:让非结构化数据处理变得简单智能
人工智能·木卫四
玖日大大43 分钟前
OceanBase SeekDB:AI 原生数据库的技术革命与实践指南
数据库·人工智能·oceanbase
小润nature44 分钟前
Spec-Driven Development (SDD) 框架与开源 AI 智能体-意图的进化
人工智能·开源
后端小肥肠1 小时前
复刻10W+爆款视频!我用Coze搭了个“人物故事”自动流水线,太香了!
人工智能·aigc·coze
轻竹办公PPT1 小时前
2026 年工作计划 PPT 内容拆解,对比不同 AI 生成思路
人工智能·python·powerpoint
浔川python社1 小时前
【版本更新提示】浔川 AI 翻译 v6.0 合规优化版已上线
人工智能