LeetCode 分类刷题:2563. 统计公平数对的数目

题目

给你一个下标从 0 开始、长度为 n 的整数数组 nums ,和两个整数 lowerupper ,返回 公平数对的数目

如果 (i, j) 数对满足以下情况,则认为它是一个 公平数对

  • 0 <= i < j < n,且
  • lower <= nums[i] + nums[j] <= upper

示例 1:

复制代码
输入:nums = [0,1,7,4,4,5], lower = 3, upper = 6
输出:6
解释:共计 6 个公平数对:(0,3)、(0,4)、(0,5)、(1,3)、(1,4) 和 (1,5) 。

示例 2:

复制代码
输入:nums = [1,7,9,2,5], lower = 11, upper = 11
输出:1
解释:只有单个公平数对:(2,3) 。

解析

来自豆包的解释

排序为何不改变答案?------ 从 "数对本质" 分析

排序的本质是重新排列数组元素的位置,但不会改变以下两个统计公平数对的核心要素:

1. 所有可能的 "元素对组合" 不变

公平数对的数值约束仅依赖 "两个元素的和",而非它们的原始位置。例如原始数组[0,1,7,4,4,5]中,数对(0,3)对应元素0+4=4(满足 3≤4≤6),排序后数组变为[0,1,4,4,5,7],这两个元素依然存在,只是位置变为(0,2),但 "0 和 4 的组合" 及 "和为 4" 的事实未变。

排序后,我们依然能找到所有 "数值和在 [lower, upper] 区间内" 的元素对 ------ 只是这些元素对的位置索引发生了变化,但 "存在多少个这样的对" 不会减少或增加。

2. 排序后仍能保证 "i < j" 的位置约束(且不重复统计)

题目要求i < j,本质是 "每个数对只统计一次"(避免(i,j)和(j,i)被重复计算)。排序后,我们依然可以通过 "固定 j,找左侧 i < j 的元素" 或 "双指针 / 二分法遍历有序数组" 来满足i < j的约束,且不会遗漏或重复统计。

例如排序后的数组[0,1,4,4,5,7],统计时只需确保 "每次找的元素都在当前元素的左侧"(i < j),就能和原始数组的统计逻辑保持一致 ------ 最终得到的 "符合条件的数对数量" 与原始数组完全相同。
由于排序不影响答案,可以先(从小到大)排序,这样可以二分查找。

nums 是 [1,2] 还是 [2,1],算出来的答案都是一样的,因为加法满足交换律 a+b=b+a。

排序后,枚举右边的 nums[j],那么左边的 nums[i] 需要满足 0≤i<j 以及lower−nums[j]≤nums[i]≤upper−nums[j]

计算 ≤upper−nums[j] 的元素个数,减去 <lower−nums[j] 的元素个数,即为满足上式的元素个数。(联想一下前缀和)

由于 nums 是有序的,我们可以在 [0,j−1] 中二分查找,

  • 找到 >upper−nums[j] 的第一个数,设其下标为 r,那么下标在 [0,r−1] 中的数都是 ≤upper−nums[j] 的,这有 r 个。如果 [0,j−1] 中没有找到这样的数,那么二分结果为 j。这意味着 [0,j−1] 中的数都是 ≤upper−nums[j] 的,这有 j 个。
  • 找到 ≥lower−nums[j] 的第一个数,设其下标为 l,那么下标在 [0,l−1] 中的数都是 <lower−nums[j] 的,这有 l 个。如果 [0,j−1] 中没有找到这样的数,那么二分结果为 j。这意味着 [0,j−1] 中的数都是 <lower−nums[j] 的,这有 j 个。
  • 满足 lower−nums[j]≤nums[i]≤upper−nums[j] 的 nums[i] 的个数为 r−l,加入答案。

作者:灵茶山艾府

链接:https://leetcode.cn/problems/count-the-number-of-fair-pairs/solutions/2107079/er-fen-cha-zhao-de-ling-huo-yun-yong-by-wplbj/

来源:力扣(LeetCode)

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

答案

复制代码
class Solution:
    def countFairPairs(self, nums: List[int], lower: int, upper: int) -> int:
        nums.sort()
        ans = 0
        for j, x in enumerate(nums):
            # 注意要在 [0, j-1] 中二分,因为题目要求两个下标 i < j
            r = bisect_right(nums, upper - x, 0, j)
            l = bisect_left(nums, lower - x, 0, j)
            ans += r - l  
        return ans

# 作者:灵茶山艾府
# 链接:https://leetcode.cn/problems/count-the-number-of-fair-pairs/solutions/2107079/er-fen-cha-zhao-de-ling-huo-yun-yong-by-wplbj/
# 来源:力扣(LeetCode)
# 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

复杂度分析

时间复杂度:O(nlogn),其中 n 为 nums 的长度。

空间复杂度:O(1)。忽略排序的栈开销。

相关推荐
做运维的阿瑞27 分钟前
Python核心架构深度解析:从解释器原理到GIL机制全面剖析
开发语言·python·架构·系统架构
软件算法开发31 分钟前
基于黑翅鸢优化的LSTM深度学习网络模型(BKA-LSTM)的一维时间序列预测算法matlab仿真
深度学习·算法·lstm·时间序列预测·黑翅鸢优化·bka-lstm
小南家的青蛙31 分钟前
LeetCode第79题 - 单词搜索
算法·leetcode·职场和发展
PAK向日葵35 分钟前
【算法导论】PDD 0928 笔试题解
算法·面试
AI数据皮皮侠3 小时前
中国上市公司数据(2000-2023年)
大数据·人工智能·python·深度学习·机器学习
我爱计算机视觉3 小时前
ICCV 2025 (Highlight) Being-VL:师夷长技,用NLP的BPE算法统一视觉语言模型
人工智能·算法·语言模型·自然语言处理
Dxy12393102166 小时前
python如何通过链接下载保存视频
python·spring·音视频
Terio_my6 小时前
Java bean 数据校验
java·开发语言·python
无咎.lsy7 小时前
裸K初级篇 - (一)蜡烛突破信号
python
virtual_k1smet8 小时前
#等价于e * d ≡ 1 mod φ(n) #模逆元详解
人工智能·算法·机器学习