Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征选择 - 移除低方差特征(VarianceThreshold)

锋哥原创的Scikit-learn Python机器学习视频教程:

2026版 Scikit-learn Python机器学习 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili

课程介绍

本课程主要讲解基于Scikit-learn的Python机器学习知识,包括机器学习概述,特征工程(数据集,特征抽取,特征预处理,特征降维等),分类算法(K-临近算法,朴素贝叶斯算法,决策树等),回归与聚类算法(线性回归,欠拟合,逻辑回归与二分类,K-means算法)等。

Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征选择 - 移除低方差特征(VarianceThreshold)

适用于移除方差低于阈值的特征,这些特征通常包含很少的信息。

VarianceThreshold 是机器学习中一个简单但实用的特征选择方法,它通过移除低方差特征来简化数据集。VarianceThreshold 的主要参数是 threshold,它决定了特征被保留与否的方差门槛。

参数名 (Parameter) 说明 (Description) 默认值 (Default)
threshold 一个浮点数 (float)。指定要保留特征的最低方差阈值。训练集中方差低于 此阈值的特征将被移除 0.0

我们来看一个示例:

复制代码
from sklearn.feature_selection import VarianceThreshold
from sklearn.datasets import load_iris
​
# 加载示例数据
X, y = load_iris(return_X_y=True)
# 设置阈值,移除方差低于0.8的特征
selector = VarianceThreshold(threshold=0.8)
X_new = selector.fit_transform(X)
​
print(f"原始特征数: {X.shape[1]}")
print(f"筛选后特征数: {X_new.shape[1]}")

运行结果:

复制代码
原始特征数: 4
筛选后特征数: 1

数学知识:方差

方差公式是一个数学公式,是数学统计学中的重要公式,应用于生活中各种事情,方差越小,代表这组数据越稳定,方差越大,代表这组数据越不稳定

若x1,x2,x3......xn的平均数为M,则方差公式可表示为:

相关推荐
低音钢琴1 小时前
【人工智能系列:机器学习学习和进阶01】机器学习初学者指南:理解核心算法与应用
人工智能·算法·机器学习
飞翔的佩奇2 小时前
【完整源码+数据集+部署教程】【天线&水】舰船战舰检测与分类图像分割系统源码&数据集全套:改进yolo11-repvit
前端·python·yolo·计算机视觉·数据集·yolo11·舰船战舰检测与分类图像分割系统
大千AI助手2 小时前
Hoeffding树:数据流挖掘中的高效分类算法详解
人工智能·机器学习·分类·数据挖掘·流数据··hoeffding树
大千AI助手3 小时前
独热编码:分类数据处理的基石技术
人工智能·机器学习·分类·数据挖掘·特征工程·one-hot·独热编码
木头左3 小时前
最大回撤约束下ETF多因子动态止盈参数校准方案
python
汤姆yu3 小时前
2026版基于python的协同过滤音乐推荐系统
开发语言·python
汤姆yu4 小时前
基于python的电子商务管理系统
开发语言·python
may_一一4 小时前
pycharm\python 安装下载
ide·python·pycharm
后台开发者Ethan4 小时前
FastAPI之 Python的类型提示
python·fastapi·ai编程
hello kitty w4 小时前
Python学习(11) ----- Python的泛型
windows·python·学习