Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征选择 - 移除低方差特征(VarianceThreshold)

锋哥原创的Scikit-learn Python机器学习视频教程:

2026版 Scikit-learn Python机器学习 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili

课程介绍

本课程主要讲解基于Scikit-learn的Python机器学习知识,包括机器学习概述,特征工程(数据集,特征抽取,特征预处理,特征降维等),分类算法(K-临近算法,朴素贝叶斯算法,决策树等),回归与聚类算法(线性回归,欠拟合,逻辑回归与二分类,K-means算法)等。

Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征选择 - 移除低方差特征(VarianceThreshold)

适用于移除方差低于阈值的特征,这些特征通常包含很少的信息。

VarianceThreshold 是机器学习中一个简单但实用的特征选择方法,它通过移除低方差特征来简化数据集。VarianceThreshold 的主要参数是 threshold,它决定了特征被保留与否的方差门槛。

参数名 (Parameter) 说明 (Description) 默认值 (Default)
threshold 一个浮点数 (float)。指定要保留特征的最低方差阈值。训练集中方差低于 此阈值的特征将被移除 0.0

我们来看一个示例:

复制代码
from sklearn.feature_selection import VarianceThreshold
from sklearn.datasets import load_iris
​
# 加载示例数据
X, y = load_iris(return_X_y=True)
# 设置阈值,移除方差低于0.8的特征
selector = VarianceThreshold(threshold=0.8)
X_new = selector.fit_transform(X)
​
print(f"原始特征数: {X.shape[1]}")
print(f"筛选后特征数: {X_new.shape[1]}")

运行结果:

复制代码
原始特征数: 4
筛选后特征数: 1

数学知识:方差

方差公式是一个数学公式,是数学统计学中的重要公式,应用于生活中各种事情,方差越小,代表这组数据越稳定,方差越大,代表这组数据越不稳定

若x1,x2,x3......xn的平均数为M,则方差公式可表示为:

相关推荐
en-route1 分钟前
深入理解 Scikit-learn:Python 中最常用的机器学习库
python·机器学习·scikit-learn
努力还债的学术吗喽7 分钟前
PyTorch nn.Linear 终极详解:从零理解线性层的一切(含可视化+完整代码)
人工智能·pytorch·python·深度学习·基础组件·线性层·nn.linear
宸津-代码粉碎机1 小时前
Redis 进阶:跳出缓存局限!7 大核心场景的原理与工程化实践
java·人工智能·redis·python
极客代码1 小时前
第五篇:后端优化——位姿图的灵魂--从图优化到滑动窗口的联合状态估计
python·深度学习·计算机视觉·视觉里程计·slam·回环检测·地图构建
程序员小白条3 小时前
度小满运维开发一面
java·运维·python·职场和发展·运维开发
彩云回5 小时前
支持向量机(SVM)
算法·机器学习·支持向量机
全栈派森6 小时前
BI数据开发全攻略:数据仓库、模型搭建与指标处理
数据仓库·python·程序人生
铁手飞鹰7 小时前
从零复现论文:深度学习域适应1
linux·pytorch·python·深度学习·ubuntu·ai·迁移学习
薰衣草233310 小时前
力扣——位运算
python·算法·leetcode
两只程序猿10 小时前
数据可视化 | Violin Plot小提琴图Python实现 数据分布密度可视化科研图表
开发语言·python·信息可视化