Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征选择 - 移除低方差特征(VarianceThreshold)

锋哥原创的Scikit-learn Python机器学习视频教程:

2026版 Scikit-learn Python机器学习 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili

课程介绍

本课程主要讲解基于Scikit-learn的Python机器学习知识,包括机器学习概述,特征工程(数据集,特征抽取,特征预处理,特征降维等),分类算法(K-临近算法,朴素贝叶斯算法,决策树等),回归与聚类算法(线性回归,欠拟合,逻辑回归与二分类,K-means算法)等。

Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征选择 - 移除低方差特征(VarianceThreshold)

适用于移除方差低于阈值的特征,这些特征通常包含很少的信息。

VarianceThreshold 是机器学习中一个简单但实用的特征选择方法,它通过移除低方差特征来简化数据集。VarianceThreshold 的主要参数是 threshold,它决定了特征被保留与否的方差门槛。

参数名 (Parameter) 说明 (Description) 默认值 (Default)
threshold 一个浮点数 (float)。指定要保留特征的最低方差阈值。训练集中方差低于 此阈值的特征将被移除 0.0

我们来看一个示例:

复制代码
from sklearn.feature_selection import VarianceThreshold
from sklearn.datasets import load_iris
​
# 加载示例数据
X, y = load_iris(return_X_y=True)
# 设置阈值,移除方差低于0.8的特征
selector = VarianceThreshold(threshold=0.8)
X_new = selector.fit_transform(X)
​
print(f"原始特征数: {X.shape[1]}")
print(f"筛选后特征数: {X_new.shape[1]}")

运行结果:

复制代码
原始特征数: 4
筛选后特征数: 1

数学知识:方差

方差公式是一个数学公式,是数学统计学中的重要公式,应用于生活中各种事情,方差越小,代表这组数据越稳定,方差越大,代表这组数据越不稳定

若x1,x2,x3......xn的平均数为M,则方差公式可表示为:

相关推荐
骇城迷影2 分钟前
Makemore 核心面试题大汇总
人工智能·pytorch·python·深度学习·线性回归
长安牧笛5 分钟前
反传统学习APP,摒弃固定课程顺序,根据用户做题正确性,学习速度,动态调整课程难度,比如某知识点学不会,自动推荐基础讲解和练习题,学习后再进阶,不搞一刀切。
python·编程语言
码界筑梦坊16 分钟前
330-基于Python的社交媒体舆情监控系统
python·mysql·信息可视化·数据分析·django·毕业设计·echarts
森焱森21 分钟前
详解 Spring Boot、Flask、Nginx、Redis、MySQL 的关系与协作
spring boot·redis·python·nginx·flask
he___H24 分钟前
双色球红球
python
deephub26 分钟前
机器学习特征工程:分类变量的数值化处理方法
python·机器学习·特征工程·分类变量
墩墩冰40 分钟前
计算机图形学 实现直线段的反走样
人工智能·机器学习
Pyeako1 小时前
深度学习--卷积神经网络(下)
人工智能·python·深度学习·卷积神经网络·数据增强·保存最优模型·数据预处理dataset
OPEN-Source1 小时前
大模型实战:搭建一张“看得懂”的大模型应用可观测看板
人工智能·python·langchain·rag·deepseek