Spark提交任务的资源配置和优化

Spark 提交任务时主要可调的资源配置参数包括 Driver 资源(内存、CPU)、Executor 资源(数量、内存、CPU)以及 集群管理相关参数。配置和优化时一般结合集群硬件资源、数据规模、作业类型和作业复杂度(SQL / 机器学习) 来综合设置。

下面是提交过程参数配置实例:

shell 复制代码
spark-submit --driver-memory 4g \ # 指定Driver进程的内存大小(堆内存),影响不大。
--num-executors 15 # Executor 的总数量,Standalone/K8s 可直接设定;Yarn默认会动态分配。
--executor-memory 8g \ # 指定每个Executor的内存大小(堆内存),一般都是Execution会出现OOM,因为Storage会落盘。
--executor-cores 3 \ # 指定每个Executor核心数(真正并行数),4核心建议设成3。
--queue root.default \ # 设置Yarn的资源队列。
--conf spark.yarn.executor.memoryOverhead=2048 \ # 设置堆外内存大小,默认executor-memory的10%。
--conf spark.core.connection.ack.wait.timeout=300 # 设置通讯等待超时时间。
# 例如集群有15台机器,每台2个CPU核心,则指定15个Executor每个的核心为2。总并行度 = num-executors × executor-cores,尽量大于等于总分区数

资源优化的策略包括:

  1. 内存分配:
    executor-memory ≈ 节点内存 ÷ 每节点 Executor 数量 - 预留空间;
    num-executors × executor-cores 不要超过节点总核数。
  2. 并行度:一般建议 总 cores ≈ 分区数 或者稍大一些。SQL 场景调节 spark.sql.shuffle.partitions(默认 200 通常过大/过小都不好)。
  3. 动态分配:在资源紧张的环境或多租户模式下建议开启,可避免资源浪费。
相关推荐
LDG_AGI1 天前
【推荐系统】深度学习训练框架(七):PyTorch DDP(DistributedDataParallel)中,每个rank的batch数必须相同
网络·人工智能·pytorch·深度学习·机器学习·spark·batch
LDG_AGI1 天前
【推荐系统】深度学习训练框架(六):PyTorch DDP(DistributedDataParallel)数据并行分布式深度学习原理
人工智能·pytorch·分布式·python·深度学习·算法·spark
lucky_syq1 天前
深入Spark核心:Shuffle全剖析与实战指南
大数据·分布式·python·spark
一只游鱼1 天前
spark3版本和java17版本不兼容导致的报错解决方法
spark
一只游鱼1 天前
Linux单机部署spark
spark
pale_moonlight1 天前
九、Spark基础环境实战(下)
大数据·javascript·spark
嘉禾望岗5031 天前
spark standalone模式HA部署,任务失败重提测试
大数据·分布式·spark
吃喝不愁霸王餐APP开发者1 天前
外卖霸王餐用户画像标签系统:Spark SQL批处理+Kafka流处理混合计算
sql·spark·kafka
B站计算机毕业设计之家1 天前
电商数据实战:python京东商品爬取与可视化系统 大数据 Hadoop spark 优秀项目(源码)✅
大数据·hadoop·python·机器学习·spark·echarts·推荐算法
询问QQ:180809512 天前
基于perscan、simulink、carsim联仿的自动驾驶避障模型:动态工况下的边界约束...
spark