Spark提交任务的资源配置和优化

Spark 提交任务时主要可调的资源配置参数包括 Driver 资源(内存、CPU)、Executor 资源(数量、内存、CPU)以及 集群管理相关参数。配置和优化时一般结合集群硬件资源、数据规模、作业类型和作业复杂度(SQL / 机器学习) 来综合设置。

下面是提交过程参数配置实例:

shell 复制代码
spark-submit --driver-memory 4g \ # 指定Driver进程的内存大小(堆内存),影响不大。
--num-executors 15 # Executor 的总数量,Standalone/K8s 可直接设定;Yarn默认会动态分配。
--executor-memory 8g \ # 指定每个Executor的内存大小(堆内存),一般都是Execution会出现OOM,因为Storage会落盘。
--executor-cores 3 \ # 指定每个Executor核心数(真正并行数),4核心建议设成3。
--queue root.default \ # 设置Yarn的资源队列。
--conf spark.yarn.executor.memoryOverhead=2048 \ # 设置堆外内存大小,默认executor-memory的10%。
--conf spark.core.connection.ack.wait.timeout=300 # 设置通讯等待超时时间。
# 例如集群有15台机器,每台2个CPU核心,则指定15个Executor每个的核心为2。总并行度 = num-executors × executor-cores,尽量大于等于总分区数

资源优化的策略包括:

  1. 内存分配:
    executor-memory ≈ 节点内存 ÷ 每节点 Executor 数量 - 预留空间;
    num-executors × executor-cores 不要超过节点总核数。
  2. 并行度:一般建议 总 cores ≈ 分区数 或者稍大一些。SQL 场景调节 spark.sql.shuffle.partitions(默认 200 通常过大/过小都不好)。
  3. 动态分配:在资源紧张的环境或多租户模式下建议开启,可避免资源浪费。
相关推荐
!chen2 天前
大数据技术领域发展与Spark的性能优化
大数据·性能优化·spark
大鳥2 天前
Hive on Spark SQL 性能优化权威指南
hive·sql·spark
Lansonli2 天前
大数据Spark(七十七):Action行动算子first、collect和collectAsMap使用案例
大数据·分布式·spark
计算机毕业编程指导师2 天前
【计算机毕设选题】基于Spark的拉勾网招聘数据分析系统源码,Python+Django全流程
大数据·hadoop·python·spark·django·招聘·拉勾网
m0_748254664 天前
Perl 变量类型
spark·scala·perl
鸿乃江边鸟4 天前
Spark Datafusion Comet 向量化Rule--CometScanRule分析
大数据·spark·native
浊酒南街4 天前
spark sql 中LENGTH 和 SIZE 函数介绍
sql·spark
青云交4 天前
Java 大视界 -- Java+Spark 构建离线数据仓库:分层设计与 ETL 开发实战(445)
java·数据仓库·spark·分层设计·java+spark·离线数据仓库·etl 开发
yumgpkpm5 天前
基于GPU的Spark应用加速 Cloudera CDP/华为CMP鲲鹏版+Nvidia英伟达联合解决方案
大数据·数据库·人工智能·hadoop·elasticsearch·spark·cloudera
鸿乃江边鸟5 天前
Spark Datafusion Comet 向量化--ApplyColumnarRulesAndInsertTransitions规则
大数据·spark·native