Spark提交任务的资源配置和优化

Spark 提交任务时主要可调的资源配置参数包括 Driver 资源(内存、CPU)、Executor 资源(数量、内存、CPU)以及 集群管理相关参数。配置和优化时一般结合集群硬件资源、数据规模、作业类型和作业复杂度(SQL / 机器学习) 来综合设置。

下面是提交过程参数配置实例:

shell 复制代码
spark-submit --driver-memory 4g \ # 指定Driver进程的内存大小(堆内存),影响不大。
--num-executors 15 # Executor 的总数量,Standalone/K8s 可直接设定;Yarn默认会动态分配。
--executor-memory 8g \ # 指定每个Executor的内存大小(堆内存),一般都是Execution会出现OOM,因为Storage会落盘。
--executor-cores 3 \ # 指定每个Executor核心数(真正并行数),4核心建议设成3。
--queue root.default \ # 设置Yarn的资源队列。
--conf spark.yarn.executor.memoryOverhead=2048 \ # 设置堆外内存大小,默认executor-memory的10%。
--conf spark.core.connection.ack.wait.timeout=300 # 设置通讯等待超时时间。
# 例如集群有15台机器,每台2个CPU核心,则指定15个Executor每个的核心为2。总并行度 = num-executors × executor-cores,尽量大于等于总分区数

资源优化的策略包括:

  1. 内存分配:
    executor-memory ≈ 节点内存 ÷ 每节点 Executor 数量 - 预留空间;
    num-executors × executor-cores 不要超过节点总核数。
  2. 并行度:一般建议 总 cores ≈ 分区数 或者稍大一些。SQL 场景调节 spark.sql.shuffle.partitions(默认 200 通常过大/过小都不好)。
  3. 动态分配:在资源紧张的环境或多租户模式下建议开启,可避免资源浪费。
相关推荐
小白学大数据10 小时前
海量小说数据采集:Spark 爬虫系统设计
大数据·开发语言·爬虫·spark
嘉禾望岗50313 小时前
Spark-Submit参数介绍及任务资源使用测试
大数据·分布式·spark
ha_lydms1 天前
5、Spark函数_s/t
java·大数据·python·spark·数据处理·maxcompute·spark 函数
嘉禾望岗5031 天前
spark算子类型
大数据·分布式·spark
是阿威啊3 天前
【maap-analysis】spark离线数仓项目完整的开发流程
大数据·分布式·spark·scala
ha_lydms3 天前
3、Spark 函数_d/e/f/j/h/i/j/k/l
大数据·分布式·spark·函数·数据处理·dataworks·maxcompute
ha_lydms4 天前
4、Spark 函数_m/n/o/p/q/r
大数据·数据库·python·sql·spark·数据处理·dataworks
潘达斯奈基~4 天前
spark性能优化5:资源配置与并行度优化
大数据·ajax·性能优化·spark
ha_lydms4 天前
2、Spark 函数_a/b/c
大数据·c语言·hive·spark·时序数据库·dataworks·数据开发
ha_lydms4 天前
6、Spark 函数_u/v/w/x/y/z
java·大数据·python·spark·数据处理·dataworks·spark 函数