Spark提交任务的资源配置和优化

Spark 提交任务时主要可调的资源配置参数包括 Driver 资源(内存、CPU)、Executor 资源(数量、内存、CPU)以及 集群管理相关参数。配置和优化时一般结合集群硬件资源、数据规模、作业类型和作业复杂度(SQL / 机器学习) 来综合设置。

下面是提交过程参数配置实例:

shell 复制代码
spark-submit --driver-memory 4g \ # 指定Driver进程的内存大小(堆内存),影响不大。
--num-executors 15 # Executor 的总数量,Standalone/K8s 可直接设定;Yarn默认会动态分配。
--executor-memory 8g \ # 指定每个Executor的内存大小(堆内存),一般都是Execution会出现OOM,因为Storage会落盘。
--executor-cores 3 \ # 指定每个Executor核心数(真正并行数),4核心建议设成3。
--queue root.default \ # 设置Yarn的资源队列。
--conf spark.yarn.executor.memoryOverhead=2048 \ # 设置堆外内存大小,默认executor-memory的10%。
--conf spark.core.connection.ack.wait.timeout=300 # 设置通讯等待超时时间。
# 例如集群有15台机器,每台2个CPU核心,则指定15个Executor每个的核心为2。总并行度 = num-executors × executor-cores,尽量大于等于总分区数

资源优化的策略包括:

  1. 内存分配:
    executor-memory ≈ 节点内存 ÷ 每节点 Executor 数量 - 预留空间;
    num-executors × executor-cores 不要超过节点总核数。
  2. 并行度:一般建议 总 cores ≈ 分区数 或者稍大一些。SQL 场景调节 spark.sql.shuffle.partitions(默认 200 通常过大/过小都不好)。
  3. 动态分配:在资源紧张的环境或多租户模式下建议开启,可避免资源浪费。
相关推荐
qqxhb20 小时前
系统架构设计师备考第68天——大数据处理架构
大数据·hadoop·flink·spark·系统架构·lambda·kappa
xiaoshu_yilian1 天前
pyspark入门实操(收藏版)
spark
梦里不知身是客112 天前
Spark的容错机制
大数据·分布式·spark
乌恩大侠2 天前
【Spark】操作记录
人工智能·spark·usrp
大数据CLUB2 天前
酒店预订数据分析及预测可视化
大数据·hadoop·分布式·数据挖掘·数据分析·spark·mapreduce
新知图书2 天前
RDD的特点、算子与创建方法
数据分析·spark·1024程序员节
青云交3 天前
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用
java·spark·lstm·可视化·java 大数据·空气质量监测·污染溯源
Lansonli3 天前
大数据Spark(七十二):Transformation转换算子repartition和coalesce使用案例
大数据·分布式·spark
lucky_syq3 天前
Scala与Spark算子:大数据处理的黄金搭档
开发语言·spark·scala
筑梦之人4 天前
Spark-3.5.7文档3 - Spark SQL、DataFrame 和 Dataset 指南
spark