论文阅读:arxiv 2023 Large Language Models are Not Stable Recommender Systems

总目录 大模型相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328

https://arxiv.org/pdf/2312.15746

速览

破解大语言模型在推荐系统中的不稳定性

该论文聚焦于大语言模型(LLMs)在推荐系统中的应用问题,指出其存在显著的不稳定性,主要源于LLMs的固有位置偏差。研究者们通过深入分析,发现LLMs在推荐任务中对输入项的顺序极为敏感,导致推荐结果不稳定。例如,在改变真实项在提示中的位置时,推荐性能会显著变化。为解决这一问题,论文提出了一种名为STELLA(Stable LLM for Recommendation)的贝叶斯概率框架。该框架包含两个阶段:探测阶段和推荐阶段。在探测阶段,通过探测检测数据集识别LLMs中的位置偏差模式,构建转移矩阵;在推荐阶段,利用贝叶斯策略调整LLMs的偏差输出,并引入基于输出分布熵的置信度指标。实验结果表明,STELLA框架能显著降低LLMs推荐结果的方差,同时提升整体推荐性能。该研究不仅揭示了LLMs在推荐系统应用中的潜在问题,还为如何校准LLMs的不稳定性提供了有效解决方案,对推动LLMs在推荐系统领域的应用具有重要意义。

相关推荐
极客BIM工作室17 分钟前
解密VQVAE中的Codebook
人工智能
DogDaoDao20 分钟前
大语言模型四大核心技术架构深度解析
人工智能·语言模型·架构·大模型·transformer·循环神经网络·对抗网络
shayudiandian34 分钟前
Transformer结构完全解读:从Attention到LLM
人工智能·深度学习·transformer
天天爱吃肉821842 分钟前
新能源汽车动力系统在环(HIL)半实物仿真测试台架深度解析
人工智能·python·嵌入式硬件·汽车
xier_ran1 小时前
深度学习:深入理解 Softmax 激活函数
人工智能·深度学习
aitoolhub1 小时前
重塑机器人未来:空间智能驱动产业智能化升级
大数据·人工智能·深度学习·机器学习·机器人·aigc
放羊郎1 小时前
机器人自主导航方案概述
人工智能·算法·机器人·slam·建图
极客BIM工作室1 小时前
思维链(CoT)的本质:无需架构调整,仅靠提示工程激活大模型推理能力
人工智能·机器学习·架构
放羊郎2 小时前
一款基于鲁班猫和STM32的自主导航实践
人工智能·数码相机·slam·视觉slam·建图·激光slam
eacape2 小时前
什么是RAG?啥又是向量?带你从周杰伦的角度读懂.....
人工智能·agent