论文阅读:arxiv 2023 Large Language Models are Not Stable Recommender Systems

总目录 大模型相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328

https://arxiv.org/pdf/2312.15746

速览

破解大语言模型在推荐系统中的不稳定性

该论文聚焦于大语言模型(LLMs)在推荐系统中的应用问题,指出其存在显著的不稳定性,主要源于LLMs的固有位置偏差。研究者们通过深入分析,发现LLMs在推荐任务中对输入项的顺序极为敏感,导致推荐结果不稳定。例如,在改变真实项在提示中的位置时,推荐性能会显著变化。为解决这一问题,论文提出了一种名为STELLA(Stable LLM for Recommendation)的贝叶斯概率框架。该框架包含两个阶段:探测阶段和推荐阶段。在探测阶段,通过探测检测数据集识别LLMs中的位置偏差模式,构建转移矩阵;在推荐阶段,利用贝叶斯策略调整LLMs的偏差输出,并引入基于输出分布熵的置信度指标。实验结果表明,STELLA框架能显著降低LLMs推荐结果的方差,同时提升整体推荐性能。该研究不仅揭示了LLMs在推荐系统应用中的潜在问题,还为如何校准LLMs的不稳定性提供了有效解决方案,对推动LLMs在推荐系统领域的应用具有重要意义。

相关推荐
莫非王土也非王臣1 天前
卷积神经网络与应用
人工智能·神经网络·cnn
Yeats_Liao1 天前
MindSpore开发之路(二十五):融入开源:如何为MindSpore社区贡献力量
人工智能·分布式·深度学习·机器学习·华为·开源
Hi202402171 天前
如何通过选择正确的畸变模型解决相机标定难题
人工智能·数码相机·计算机视觉·自动驾驶
Blossom.1181 天前
Transformer架构优化实战:从MHA到MQA/GQA的显存革命
人工智能·python·深度学习·react.js·架构·aigc·transformer
kaikaile19951 天前
matlab计算流场
人工智能·算法·matlab
小明_GLC1 天前
Falcon-TST: A Large-Scale Time Series Foundation Model
论文阅读·人工智能·深度学习·transformer
Python_Study20251 天前
制造业数据采集系统选型指南:从技术挑战到架构实践
大数据·网络·数据结构·人工智能·架构
一只大侠的侠1 天前
【工业AI热榜】LSTM+GRU融合实战:设备故障预测准确率99.3%,附开源数据集与完整代码
人工智能·gru·lstm
weisian1511 天前
入门篇--知名企业-26-华为-2--华为VS阿里:两种科技路径的较量与共生
人工智能·科技·华为·阿里
棒棒的皮皮1 天前
【深度学习】YOLO模型精度优化 Checklist
人工智能·深度学习·yolo·计算机视觉