llama_factory 安装以及大模型微调

官方中文文档:https://llamafactory.readthedocs.io/zh-cn/latest/

1、安装虚拟环境

conda create -n llamafactory python==3.12

source activate llamafactory

2、安装llama_factory

下载: git clone https://github.com/hiyouga/LLaMA-Factory.git

到 LLaMA-Factory 目录运行安装命令

cd LLaMA-Factory

pip install -e .

打开LLaMA-Factory UI页面:

llamafactory-cli webui

3、数据集准备

数据集分为训练、验证、测试 数据集,训练数据集是对模型进行训练的、占绝大部分;验证数据集是在模型训练过程中对模型效果的验证、如果达到了预期的效果可以停止训练;测试数据集是模型训练完成后对模型进行测试;这三个数据集的内容不能是一样的,也就是在验证和测试时要使用新的数据;

在下载 的 LLaMA-factory 目录中,data中新增或修改数据集、dataset_info.json中配置数据集

4、模型的微调和验证

我使用的 vscode 的 Remote - SSH 插件,打开 webui 页面后自动打开页面,在页面进行微调、无需写代码

点 开始后就开始训练,当损失不再降低时即可中断训练,中断后点 开始 可继续训练

训练生成检查点后终端了,如果向接着上次的检查点继续训练,可以将检查点路径复制到 "检查点" 路径中,点 "开始" 继续训练;

分布式训练:

当一个模型比较大时在一个GPU内存中放不下,可以采用分布式训练,分布式就是将模型 或 计算拆分到不同的GPU中进行训练;设备数量 是自动读取的GPU数量, 不可修改;DeepSpeed stage是分布式训练的模式,参数参考官网中的说明;

5、模型效果验证

在训练模型时设置的保存间隔是100,所以每100个批次就会就会生成一个检查点。

点 chat 进入聊天页面,粘贴一个检查点的绝对路径,然后再下面的聊天窗口中检查训练效果。

6、模型的评估

在 Evaluate&Predict 页签中,选择数据集对 生产的检查点进行验证,可以看到评估的损失函数,验证数据的损失函数一般不作为模型的衡量标准,模型的训练效果主要根据测试数据的输出进行判断

7、模型的导出

检验检查点没问题后将 原模型和训练的检查点 导出成一个新的模型,新的模型就包含了训练的检查点功能

8、验证导出的新模型

在chat 中,选择新模型、清空检查点,可以看到模型是微调后的效果

相关推荐
开发者导航7 天前
【开发者导航】轻量可微调且开源的大语言模型家族:LLaMA
语言模型·开源·llama
缘友一世7 天前
借助LLama_Factory工具对大模型进行lora微调
llama
illuspas9 天前
MI50运算卡使用llama.cpp的ROCm后端运行Qwen3-Coder-30B-A3B的速度测试
人工智能·llama
herogus丶9 天前
【LLM】LLaMA-Factory 训练模型入门指南
python·ai编程·llama
illuspas9 天前
MI50运算卡使用llama.cpp的ROCm后端运行gpt-oss-20b的速度测试
人工智能·gpt·llama
谏书稀9 天前
LLaMA Factory微调大模型
python·transformer·llama
菠菠萝宝10 天前
【AI应用探索】-7- LLaMA-Factory微调模型
人工智能·深度学习·大模型·llm·nlp·attention·llama
wuningw11 天前
Windows环境下LLaMA-Factory微调模型时“未检测到CUDA环境”
llama
喜欢吃豆12 天前
llama.cpp 全方位技术指南:从底层原理到实战部署
人工智能·语言模型·大模型·llama·量化·llama.cpp
skywalk816313 天前
在星河社区部署大模型unsloth/Llama-3.3-70B-Instruct-GGUF
llama·aistudio