【GPT入门】第67课 多模态模型实践: 本地部署文生视频模型和图片推理模型

【GPT入门】第67课 多模态模型实践: 本地部署文生视频模型和图片推理模型

  • [1. 文生视频模型CogVideoX-5b 本地部署](#1. 文生视频模型CogVideoX-5b 本地部署)
    • [1.1 模型介绍](#1.1 模型介绍)
    • [1.2 环境安装](#1.2 环境安装)
    • [1.3 模型下载](#1.3 模型下载)
    • [1.4 测试](#1.4 测试)
  • [2.ollama部署图片推理模型 llama3.2-vision](#2.ollama部署图片推理模型 llama3.2-vision)
    • [2.1 模型介绍](#2.1 模型介绍)
    • [2.2 安装ollama](#2.2 安装ollama)
    • [2.3 下载模型](#2.3 下载模型)
    • [2.4 测试模型](#2.4 测试模型)
    • [2.5 测试](#2.5 测试)

1. 文生视频模型CogVideoX-5b 本地部署

https://www.modelscope.cn/models/ZhipuAI/CogVideoX-5b/summary

1.1 模型介绍

https://www.modelscope.cn/models/ZhipuAI/CogVideoX-5b/summary

1.2 环境安装

下载 安装conda

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

conda create --prefix /root/autodl-tmp/xxzhenv/video python=3.10 -y

conda create --name video python=3.10

复制代码
 pip install --upgrade transformers accelerate diffusers imageio-ffmpeg 

1.3 模型下载

复制代码
modelscope download --model ZhipuAI/CogVideoX-5b   --local_dir /root/autodl-tmp/models_xxzh/ZhipuAI/CogVideoX-5b  

1.4 测试

复制代码
import torch
from modelscope import CogVideoXPipeline
from diffusers.utils import export_to_video

prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."

pipe = CogVideoXPipeline.from_pretrained(
    "/root/autodl-tmp/models_xxzh/ZhipuAI/CogVideoX-5b",
    torch_dtype=torch.bfloat16
)

pipe.enable_sequential_cpu_offload()
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()

video = pipe(
    prompt=prompt,
    num_videos_per_prompt=1,
    num_inference_steps=50,
    num_frames=49,
    guidance_scale=6,
    generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]

export_to_video(video, "output.mp4", fps=8)

2.ollama部署图片推理模型 llama3.2-vision

2.1 模型介绍

官网: https://ollama.com/library/llama3.2-vision

Llama 3.2-Vision 多模态大型语言模型(LLM)系列,是包含 110 亿参数和 900 亿参数两种规模的指令微调型图像推理生成模型集合,支持 "输入文本 + 图像 / 输出文本" 的交互模式。

经过指令微调的 Llama 3.2-Vision 模型,在视觉识别、图像推理、图像描述生成,以及回答与图像相关的通用问题等任务上进行了优化。在行业常用基准测试中,该系列模型的性能优于多款已有的开源及闭源多模态模型。

支持语言

  • 纯文本任务:官方支持英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语共 8 种语言。此外,Llama 3.2 的训练数据涵盖了比这 8 种官方支持语言更广泛的语种范围。
  • 图像 + 文本任务:需注意,目前仅支持英语。

2.2 安装ollama

curl -fsSL https://ollama.com/install.sh | sh

2.3 下载模型

复制代码
ollama pull llama3.2-vision

2.4 测试模型

conda create --prefix /root/autodl-tmp/xxzhenv/ollama python=3.10 -y

conda activate ollama

pip install ollama

2.5 测试

放一个图片

复制代码
import ollama

response = ollama.chat(
    model='llama3.2-vision',
    messages=[{
        'role': 'user',
        'content': 'What is in this image?',
        'images': ['image.jpeg']
    }]
)

print(response)

回复:

复制代码
(/root/autodl-tmp/xxzhenv/ollama) root@autodl-container-b197439d52-c6eeee38:~/autodl-tmp/xxzh# python test01.py 
model='llama3.2-vision' created_at='2025-09-12T07:40:47.282497498Z' done=True done_reason='stop' total_duration=9314004386 load_duration=6304258184 prompt_eval_count=16 prompt_eval_duration=1965372891 eval_count=74 eval_duration=1036467359 message=Message(role='assistant', content='The image is a painting of a starry night sky with a village below, featuring a large cypress tree and a bright crescent moon. The painting is called "The Starry Night" and was created by Vincent van Gogh in 1889. It is one of his most famous works and is widely considered a masterpiece of Post-Impressionism.', thinking=None, images=None, tool_name=None, tool_calls=None)
相关推荐
程序员佳佳14 小时前
GPT-4时代终结?GPT-5.2与Banana Pro实测数据公开,普通开发者如何接住这泼天富贵
开发语言·python·gpt·chatgpt·重构·api·midjourney
hunteritself1 天前
Adobe 把 Photoshop 搬进了 ChatGPT,免费的
gpt·机器学习·ui·adobe·chatgpt·智能手机·photoshop
建行一世2 天前
【Windows笔记本大模型“傻瓜式”教程】在Dify的workflow中对接GPT_SoVITS实现对原神芙宁娜的语音生成
windows·gpt·ai
是店小二呀2 天前
昇腾 NPU 环境下 GPT-2 模型本地部署全指南(含踩坑排错)
gpt·npu
小桥流水---人工智能3 天前
我的中英翻译统一GPT指令模板(专业三阶段翻译流程备忘)
gpt
百***24373 天前
小米MiMo-V2-Flash深度解析:国产开源大模型的轻量化落地革命
java·人工智能·gpt
前端程序猿之路4 天前
AI大模型应用之-RAG 全流程
人工智能·python·gpt·语言模型·aigc·mybatis·ai编程
Lian_Ge_Blog4 天前
GPT 系列学习总结(1-3)
gpt
百***78754 天前
Step-Audio-2 轻量化接入全流程详解
android·java·gpt·php·llama
百***07456 天前
GPT-Image-1.5 极速接入全流程及关键要点
人工智能·gpt·计算机视觉