OpenCV(cv2)学习笔记:从模板匹配入门到常用函数

1️⃣ 什么是 OpenCV (cv2)

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,提供了图像处理、视频分析、机器视觉、特征识别等功能。

在 Python 中,使用 cv2 模块来调用 OpenCV 的各种函数。

特点:

  • 强大:涵盖图像读取、编辑、特征检测、机器学习等。
  • 跨平台:支持 Windows、Linux、macOS。
  • 易用:与 NumPy 紧密结合,图像直接以 numpy.ndarray(数组/矩阵)形式存储。

2️⃣ 模板匹配案例

模板匹配是一种在大图中寻找小图的经典方法。

我们的目标是:给定一张模板图(template),在目标图像(image)中找到它出现的位置,并用绿色矩形标记出来。

完整代码(详细注释版)

python 复制代码
import cv2   # 导入 OpenCV 库,用于图像处理和计算机视觉

# 1. 读取原图像(待搜索的图像)
kele = cv2.imread('image.png')   # 从文件读取图像,返回 NumPy 数组(BGR 格式)
cv2.imshow('kele', kele)         # 显示原图
cv2.waitKey(0)                   # 等待用户按下任意键,按键后窗口才会响应

# 2. 读取模板图像(要找的小图)
template = cv2.imread('template.png')
cv2.imshow('template', template)
cv2.waitKey(0)

# 3. 获取模板的尺寸(高 h,宽 w)
h, w = template.shape[:2]        # shape[0] 是高度,shape[1] 是宽度

# 4. 进行模板匹配
# TM_CCOEFF_NORMED:归一化相关系数匹配法,匹配度越高值越接近 1
res = cv2.matchTemplate(kele, template, cv2.TM_CCOEFF_NORMED)

# 5. 获取匹配结果中的最大值、最小值及对应的位置
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# min_val:最小匹配值
# max_val:最大匹配值
# min_loc:最小值的位置 (x, y)
# max_loc:最大值的位置 (x, y)

# 6. 确定最佳匹配区域
top_left = max_loc   # TM_CCOEFF_NORMED 是"值越大越相似",所以取 max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)

# 7. 在原图上绘制绿色矩形框
kele_template = cv2.rectangle(kele, top_left, bottom_right, (0, 255, 0), 2)
# 参数:
# - (0, 255, 0):绿色 (BGR)
# - 2:线条宽度

# 8. 显示结果
cv2.imshow('kele_template', kele_template)
cv2.waitKey(0)

运行效果:

程序会依次弹出三个窗口:

  1. 显示原图 kele
  2. 显示模板图 template
  3. 在原图中绘制绿色矩形框标记匹配区域

3️⃣ 核心函数讲解

图像读写与显示

函数 作用 常用参数
cv2.imread(path, flags) 读取图像 flags: cv2.IMREAD_COLOR(默认彩色)、cv2.IMREAD_GRAYSCALE(灰度)
cv2.imwrite(path, img) 保存图像 文件路径
cv2.imshow(winname, img) 显示图像窗口 winname 为窗口名
cv2.waitKey(delay) 等待键盘事件 delay=0 表示无限等待,单位:毫秒
cv2.destroyAllWindows() 关闭所有窗口

图像属性

python 复制代码
img.shape  # (height, width, channels)
img.size   # 图像像素总数
img.dtype  # 图像数据类型(如 uint8)

绘图函数

函数 作用
cv2.line(img, pt1, pt2, color, thickness) 画线
cv2.rectangle(img, pt1, pt2, color, thickness) 画矩形
cv2.circle(img, center, radius, color, thickness) 画圆
cv2.putText(img, text, org, font, scale, color, thickness) 绘制文字

模板匹配

函数 作用
cv2.matchTemplate(image, templ, method) 计算模板在图像中每个位置的匹配度
cv2.minMaxLoc(src) 返回最小值、最大值及其坐标
常用匹配方法:
  • cv2.TM_SQDIFF:平方差匹配(越小越相似)
  • cv2.TM_CCORR_NORMED:归一化相关匹配(越大越相似)
  • cv2.TM_CCOEFF_NORMED:归一化相关系数匹配(越大越相似)

4️⃣ OpenCV 与 NumPy 的关系

OpenCV 中的图像对象是一个 NumPy 数组:

可以用数组切片直接操作像素:

python 复制代码
pixel = img[100, 200]      # 获取 (y=100, x=200) 像素 [B, G, R]
blue_channel = img[:, :, 0]  # 获取蓝色通道

可以直接使用 NumPy 的数学运算,如平均值、标准差:

python 复制代码
import numpy as np
mean_brightness = np.mean(img)

5️⃣ 经验总结

  1. cv2.imshow() 只是提交图像数据,必须配合 cv2.waitKey() 才能真正显示。
  2. 读取彩色图像时,OpenCV 默认是 BGR 而不是 RGB。
  3. 模板匹配适合小目标、光照变化不大的场景;更复杂的情况建议使用特征匹配(如 SIFT、ORB)。
相关推荐
金色天际线-34 分钟前
mysql全量+增量备份脚本及计划任务配置
数据库·mysql
zym大哥大37 分钟前
MySQL用户管理
数据库·mysql
对着晚风做鬼脸37 分钟前
MySQL 运维知识点(十六)---- 读写分离
运维·数据库·mysql·adb
老朋友此林38 分钟前
高并发下如何保证 Caffeine + Redis 多级缓存的一致性问题?MySQL、Redis 缓存一致性问题?
数据库·redis·缓存
会飞的鱼_12343 分钟前
MySQL主主复制+Keepalived高可用集群搭建与故障切换实战
数据库·mysql
gsfl4 小时前
Redis分布式锁
数据库·redis·分布式
Li zlun4 小时前
MySQL 配置管理与日志系统完全指南:从基础到高级优化
数据库·mysql
wzg20165 小时前
vscode 配置使用pyqt5
开发语言·数据库·qt
老朋友此林6 小时前
MongoDB GEO 项目场景 ms-scope 实战
java·数据库·spring boot·mongodb
极限实验室7 小时前
如何使用 INFINI Gateway 对比 ES 索引数据
数据库