剑指offer-31、整数中1出现的次数

题⽬描述

求出 113 的整数中1出现的次数,并算出 1001300 的整数中 1 出现的次数?为此他特别数了⼀下 1~13 中包含 1 的数字有 1、10、11、12、13 因此共出现 6 次,但是对于后⾯问题他就没辙了。 ACMer 希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意⾮负整数区间中 1 出现的次数(从 1 到 n 中 1 出现的次数)。

输入:13

输出:6

思路及解答

暴力循环法

java 复制代码
public class Solution {
    public int countDigitOne(int n) {
        if (n <= 0) {
            return 0;
        }
        int count = 0;
        for (int i = 1; i <= n; i++) {
            int num = i;
            while (num > 0) {
                if (num % 10 == 1) { // 检查当前位是否为1
                    count++;
                }
                num /= 10; // 移除最后一位
            }
        }
        return count;
    }
}

这道题如果使⽤暴⼒破解,肯定是会超时的,所以我们需要看看这⾥⾯有没有啥规律。

递归法

递归法通过将数字按位拆分来解决问题。以数字 21345 为例,可以将其分为 1-1345 和 1346-21345 两部分。1346-21345 中 1 的出现次数可以分为两种情况

  1. 1 出现在最高位 (万位)​
    • 如果最高位大于 1(如此处的 2),则万位出现 1 的次数为 10000 次(10000-19999)。
    • 如果最高位等于 1,则万位出现 1 的次数为 (除去最高位后的数字 + 1)次。
  2. 1 出现在其他位(千位、百位、十位、个位)​ :最高位数字 * (总位数 - 1) * 10^(剩余位数 - 1)。对于 21345,其他位出现 1 的次数为 2 * 4 * 1000 = 8000。然后再递归地计算 1-1345 中 1 出现的次数
java 复制代码
public class Solution {
    public int countDigitOne(int n) {
        if (n <= 0) return 0;
        if (n < 10) return 1; // 1-9只有1个1

        String str = String.valueOf(n);
        int len = str.length();
        int firstDigit = str.charAt(0) - '0'; // 获取首位数字
        int remainder = n % (int)Math.pow(10, len - 1); // 获取除首位后的余数
        int power = (int)Math.pow(10, len - 2); // 用于计算其他位出现1的次数

        int countFirstDigit = 0;
        // 计算最高位出现1的次数
        if (firstDigit > 1) {
            countFirstDigit = (int)Math.pow(10, len - 1);
        } else if (firstDigit == 1) {
            countFirstDigit = remainder + 1;
        }
        // 计算其他位出现1的次数
        int countOtherDigits = firstDigit * (len - 1) * (int)Math.pow(10, len - 2);
        // 递归计算剩余部分(1到 remainder)中1出现的次数
        int countRemainder = countDigitOne(remainder);

        return countFirstDigit + countOtherDigits + countRemainder;
    }
}
  • 时间复杂度:O(log n)。递归深度与数字 n 的位数 log₁₀(n) 成正比。
  • 空间复杂度:O(log n)。递归调用栈的深度。

按位统计法

这是通过数学推导直接计算每一位上 1 出现的次数,然后求和。

对于每一位(个位、十位、百位...),我们可以将数字 n 划分为三部分:

  • 高位 (high)​:当前位左边的数字
  • 当前位 (cur)​:正在考察的位上的数字
  • 低位 (low)​:当前位右边的数字
  • 位因子 (digit)​:表示当前位的权重(如个位是1,十位是10,百位是100)

根据当前位 cur的值,1 的出现次数有以下三种情况:

  1. cur == 0 :当前位为 0 时,此位出现 1 的次数由高位决定,计算公式为 high * digit。 例如,n=2304,求十位(digit=10)上1的出现次数。高位 high=23,当前位 cur=0,低位 low=4。十位为1的数字范围是0010-2219,看高位和低位相当于000-229,共230个数,即 23 * 10 = 230。
  2. cur == 1 :当前位为 1 时,此位出现 1 的次数由高位和低位共同决定,计算公式为 high * digit + low + 1。 例如,n=2314,求十位上1的出现次数。高位 high=23,当前位 cur=1,低位 low=4。十位为1的数字范围是0010-2314,看高位和低位相当于000-234,共235个数,即 23 * 10 + 4 + 1 = 235。
  3. cur > 1 :当前位大于 1 时,此位出现 1 的次数由高位决定,计算公式为 (high + 1) * digit。 例如,n=2324,求十位上1的出现次数。高位 high=23,当前位 cur=2,低位 low=4。十位为1的数字范围是0010-2319,看高位和低位相当于000-239,共240个数,即 (23 + 1) * 10 = 240。
java 复制代码
public class Solution {
    public int countDigitOne(int n) {
        if (n <= 0) return 0;
        int count = 0;
        long digit = 1; // 位因子,从个位开始
        int high = n / 10; // 高位
        int cur = n % 10; // 当前位
        int low = 0; // 低位

        while (high != 0 || cur != 0) {
            if (cur == 0) {
                count += high * digit;
            } else if (cur == 1) {
                count += high * digit + low + 1;
            } else {
                count += (high + 1) * digit;
            }
            // 更新低位、当前位、高位和位因子
            low += cur * digit;
            cur = high % 10;
            high = high / 10;
            digit *= 10;
        }
        return count;
    }
}
  • 时间复杂度 O(log n) : 循环数字 n 的位数,相当于使⽤了 log(n),时间复杂度为 O(log n)
  • 空间复杂度 O(1):
相关推荐
AAA修煤气灶刘哥2 天前
别让Redis「歪脖子」!一次搞定数据倾斜与请求倾斜的捉妖记
redis·分布式·后端
christine-rr2 天前
linux常用命令(4)——压缩命令
linux·服务器·redis
凯子坚持 c2 天前
精通 Redis list:使用 redis-plus-plus 的现代 C++ 实践深度解析
c++·redis·list
weixin_456904272 天前
跨域(CORS)和缓存中间件(Redis)深度解析
redis·缓存·中间件
波波烤鸭2 天前
Redis 高可用实战源码解析(Sentinel + Cluster 整合应用)
数据库·redis·sentinel
MarkHard1232 天前
如何利用redis使用一个滑动窗口限流
数据库·redis·缓存
island13142 天前
【Redis#10】渐进式遍历 | 数据库管理 | redis_cli | RES
数据库·redis·bootstrap
心想事成的幸运大王2 天前
Redis的过期策略
数据库·redis·缓存
wuyunhang1234563 天前
Redis---集群模式
数据库·redis·缓存