hive调优系列-1.调优须知

1、对于大数据计算引擎来说:数据量大不是问题,数据倾斜是个问题

2、Hive的复杂HQL底层会转换成多个MapReduce Job并行或者串行执行,Job数比较多的作业运行效率相对比较低,比如即使只有几百行数据的表,如果多次关联多次汇总,产生十几个Job,耗时很长。原因是MapReduce作业初始化的时间是比较长的。

3、在进行Hive大数据分析时,常见的聚合操作比如sum,count,max,min,UDAF等,不怕数据倾斜问题,MapReduce在Map阶段的预聚合操作,使数据倾斜不成问题。

4、好的建表设计,模型设计事半功倍。

5、设置合理的MapReduce的Task并行度,能有效提升性能。(比如,10w+数据量级别的计算,用100个reduceTask,那是相当的浪费,1个足够,但是如果是亿级别的数据量,那么1个Task又显得捉襟见肘)

6、了解数据分布,自己动手解决数据倾斜问题是个不错的选择。这是通用的算法优化,但算法优化有时不能适应特定业务背景,开发人员了解业务,了解数据,可以通过业务逻辑精确有效的解决数据倾斜问题。

7、数据量较大的情况下,慎用count(distinct),group by容易产生倾斜问题。

8、对小文件进行合并,是行之有效的提高调度效率的方法,假如所有的作业设置合理的文件数,对任务的整体调度效率也会产生积极的正向影响

9、优化时把握整体,单个作业最优不如整体最优

相关推荐
TTBIGDATA9 小时前
【Ambari开启Kerberos】KERBEROS SERVICE CHECK 报错
大数据·运维·hadoop·ambari·cdh·bigtop·ttbigdata
开利网络9 小时前
合规底线:健康产品营销的红线与避坑指南
大数据·前端·人工智能·云计算·1024程序员节
非著名架构师9 小时前
量化“天气风险”:金融与保险机构如何利用气候大数据实现精准定价与投资决策
大数据·人工智能·新能源风光提高精度·疾风气象大模型4.0
Hello.Reader9 小时前
用 CdcUp CLI 一键搭好 Flink CDC 演练环境
大数据·flink
熙梦数字化10 小时前
2025汽车零部件行业数字化转型落地方案
大数据·人工智能·汽车
Hello.Reader10 小时前
Flink CDC「Data Pipeline」定义与参数速查
大数据·flink
森语林溪13 小时前
大数据环境搭建从零开始(十四)CentOS 7 系统更新源更换详解:阿里云镜像源配置完整指南
大数据·linux·运维·阿里云·centos
杂家14 小时前
Zookeeper完全分布式部署(超详细)
大数据·分布式·zookeeper
snakecy14 小时前
树莓派学习资料共享
大数据·开发语言·学习·系统架构
悠闲蜗牛�15 小时前
技术融合新纪元:深度学习、大数据与云原生的跨界实践
大数据·深度学习·云原生