深度学习初探:神经网络的基本结构

在人工智能的浪潮中,深度学习(Deep Learning) 是近年来最火热的研究与应用方向。而支撑深度学习的核心就是------人工神经网络(Artificial Neural Network, ANN)。本文将带你初步了解神经网络的基本结构,帮助你快速入门。


一、什么是神经网络?

人工神经网络的灵感来源于人类大脑的神经元结构。大脑通过神经元的连接和信号传递处理信息,而人工神经网络则用数学函数与矩阵运算模拟这一过程。

  • 神经元(Neuron):最小的计算单元,接收输入,经过加权求和与非线性变换后输出结果。
  • 神经网络(Neural Network):由大量神经元按照层次结构组合而成,形成输入层、隐藏层和输出层。

二、神经网络的基本结构

1. 输入层(Input Layer)

  • 接收数据的入口。
  • 输入数据可以是图像像素、文本向量、特征数据等。
  • 每个节点对应一个特征。
    例如,房价预测问题中,特征可能包括"面积、房龄、位置"。

2. 隐藏层(Hidden Layer)

  • 位于输入层与输出层之间,由多个神经元组成。

  • 每一层神经元都会将输入做加权求和,再经过 激活函数(Activation Function) 处理,增加非线性。

  • 深度学习的"深度"就是指隐藏层的层数。

  • 常见激活函数:

    • ReLU :ReLU(x)=max⁡(0,x)\text{ReLU}(x) = \max(0, x)ReLU(x)=max(0,x)
    • Sigmoid :将结果映射到 [0,1][0,1][0,1]
    • Tanh :映射到 [−1,1][-1,1][−1,1]

3. 输出层(Output Layer)

  • 产生最终预测结果。

  • 根据任务不同,输出形式也不同:

    • 回归问题:输出一个连续值
    • 分类问题:输出多个类别概率(Softmax 函数常用)

4. 权重与偏置(Weights & Bias)

  • 权重(w):表示输入特征的重要程度,类似于线性方程中的系数。
  • 偏置(b):让模型有更大的灵活性,避免所有输入为零时输出固定为零。

公式:

z=w1x1+w2x2+...+wnxn+b z = w_1x_1 + w_2x_2 + ... + w_nx_n + b z=w1x1+w2x2+...+wnxn+b


5. 前向传播(Forward Propagation)

输入数据依次通过各层神经元,逐层计算输出,直到得到预测结果。


6. 反向传播(Backpropagation)

神经网络通过 误差反向传播 来更新参数。

  • 计算预测结果与真实值之间的误差(损失函数)。
  • 将误差沿网络反向传播,更新权重与偏置。
  • 优化算法常用 梯度下降(Gradient Descent)

三、一个简单的例子

以二分类任务(如"是否点击广告")为例:

  1. 输入层:用户特征(年龄、浏览时长、点击次数等)。
  2. 隐藏层:多层神经元,通过非线性变换学习特征组合。
  3. 输出层:使用 Sigmoid 输出概率(是否点击)。

最终,模型可以自动学习哪些特征对结果更重要,从而进行预测。


四、总结

神经网络的基本结构包括:

  • 输入层:接收数据。
  • 隐藏层:特征提取与非线性映射。
  • 输出层:生成结果。
  • 权重、偏置、激活函数:支撑计算的核心要素。

理解了这些基础,才能更好地学习 CNN(卷积神经网络)、RNN(循环神经网络)、Transformer 等更复杂的深度学习模型。

相关推荐
阿十六7 分钟前
OUC AI Lab 第六章:基于卷积的注意力机制
人工智能
努力の小熊22 分钟前
基于tensorflow框架的MSCNN-LSTM模型在CWRU轴承故障诊断的应用
人工智能·tensorflow·lstm
AI即插即用25 分钟前
即插即用涨点系列 (八):AMDNet 详解!AAAI 2025 SOTA,MLP 融合多尺度分解(MDM)与 AMS 的涨点新范式。
人工智能·pytorch·深度学习·目标检测·计算机视觉·transformer
脑极体25 分钟前
穿越沙海:中国AI的中东远征
人工智能·搜索引擎
jn1001053732 分钟前
【概念科普】原位CT(In-situ CT)技术详解:从定义到应用的系统梳理
人工智能
禾风wyh1 小时前
(ICLR 2019)APPNP传播用 PageRank,不用神经网络!
人工智能·深度学习·神经网络
Keep_Trying_Go1 小时前
论文STEERER人群计数,车辆计数以及农作物计数算法详解(pytorch)
人工智能·pytorch·python
gzu_011 小时前
基于昇腾 配置pytorch环境
人工智能·pytorch·python
陈 洪 伟1 小时前
AI理论知识系统复习(6):梯度饱和、梯度消失、梯度爆炸
人工智能
云在Steven1 小时前
在线确定性算法与自适应启发式在虚拟机动态整合中的竞争分析与性能优化
人工智能·算法·性能优化