基于ZYNQ的ARM+FPGA+yolo AI火灾实时监测与识别系统

2.1 总体方案设计流程

本文研究的是监控系统,因此需要图像采集,系统应能接入摄像头或其他图像传感 器,实时采集图像数据。其次对FPGA进行逻辑设计,实现实时的图像预处理[ 27-28],包 括去噪、高斯滤波和直方图均衡调整等,以提高后续处理的准确性。为了满足系统的可 拓展性,在ARM上移植Linux操作系统[ 29-30],配置以太网连接,方便拓展外设。为了 实现硬件加速,调用Xilinx的DPU模块,提高图像处理的效率和性能。其次,系统应 具备长时间稳定的能力。图2.1为总体方案的原理图。2.2 监控系统硬件设计

本系统的硬件设计包括电路设计、FPGA的逻辑设计、以及PS端的配置。其中PS 端连接SD卡、UART接口、DP接口和以太网接口,在PL中通过逻辑设计自定义IP 核。图2.2为Zynq的硬件架构图。

2.3 监控系统软件设计

在软件设计中,需要在ARM侧移植Linux,编写摄像头的驱动程序、VDMA的驱

2.4 ZYNQ平台介绍 2.4.1 ZYNQ的开发流程

在ZYNQ系统级芯片(SoC)的开发流程中,集成了软件与硬件协同设计的理念, 以实现高效的系统性能和功能优化。使用Xilinx套件进行开发,具体包括Vivado、Vitis 软件。图2.4直观表明的Xilinx开发工具的流程。

5.3.2 网络模型训练

一般模型的准确率随着训练次数增大而增大,不少训练次数下准确率波动比较大, 本设计采用了半监督学习的仿真提升识别效果。将前50轮的产生的最佳模型保存起来, 替代初始化模型作为第二轮的初始化模型,可以发现准确率相对稳定。图5.10为三种不 同模型的损失率与准确率变化曲线。5.3.2 网络模型训练

一般模型的准确率随着训练次数增大而增大,不少训练次数下准确率波动比较大, 本设计采用了半监督学习的仿真提升识别效果。将前50轮的产生的最佳模型保存起来, 替代初始化模型作为第二轮的初始化模型,可以发现准确率相对稳定。图5.10为三种不 同模型的损失率与准确率变化曲线。

.3.3 DPU加速

Xilinx的专用神经网络单元DPU模块[ 60-62],可以高效地进行运算,特别是卷积模 块中,可以为神经网络模块提升更高的速度。在实际的操作中,在PS端的Linux系统 上,调用dpu的ip进行神经网络的计算。图5.11为DPU卷积预算的流程图。

相关推荐
ThreeYear_s18 小时前
电力电子技术学习路径与FPGA/DSP技术结合方向(gemini生成)
学习·fpga开发
像风一样的男人@18 小时前
python --两个文件夹文件名比对(yolo 图和label标注比对检查)
windows·python·yolo
奋斗的牛马1 天前
FPGA—ZYNQ学习spi(六)
单片机·嵌入式硬件·学习·fpga开发·信息与通信
GateWorld1 天前
FPGA核心约束类型与语法
fpga开发
SKYDROID云卓小助手1 天前
无人设备遥控器之数字图传技术
运维·服务器·单片机·嵌入式硬件·fpga开发
Topplyz1 天前
在FPGA中实现频率计方案详解(等精度测量)
fpga开发·fpga·频率计
whik11941 天前
如何测量FPGA管脚的好坏
fpga开发
XINVRY-FPGA1 天前
XC7Z020-1CLG484I Xilinx AMD FPGA Zynq-7000 SoC
arm开发·嵌入式硬件·网络协议·fpga开发·硬件工程·信号处理·fpga
Js_cold2 天前
Verilog宏define
fpga开发·verilog
AI纪元故事会2 天前
《目标检测全解析:从R-CNN到DETR,六大经典模型深度对比与实战指南》
人工智能·yolo·目标检测·r语言·cnn