RTX5060 Ti显卡安装cuda版本PyTorch踩坑记录

RTX5060 Ti显卡安装cuda版本PyTorch踩坑记录

问题如下:

bash 复制代码
NVIDIA GeForce RTX 5060 Ti with CUDA capability sm_120 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 compute_37.
If you want to use the NVIDIA GeForce RTX 5060 Ti GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/

  warnings.warn(incompatible_device_warn.format(device_name, capability, " ".join(arch_list), device_name))

这个警告的核心问题是:你安装的 PyTorch 版本过旧,其支持的 CUDA 计算能力(最高 sm_86)无法匹配 NVIDIA GeForce RTX 5060 Ti 的计算能力(sm_120,属于 NVIDIA 最新的 Blackwell 架构)。只有安装适配 Blackwell 架构的 PyTorch 版本,才能消除警告并让 GPU 正常发挥性能。

一、关键背景:GPU 计算能力与 PyTorch 适配

RTX 5060 Ti:属于 Blackwell 架构,计算能力为 sm_120,是 2024 年后推出的新显卡,需要支持该架构的 PyTorch 版本(通常是 PyTorch 2.3 及以上,且依赖 CUDA 12.4/12.5)。

当前 PyTorch:仅支持到 sm_86(Ampere 架构,如 RTX 30/40 系列),完全不兼容 sm_120,因此会触发兼容性警告,甚至可能导致 GPU 无法被调用(仅用 CPU 运行)。

我的解决方案:

1.我先是按照这个博客进行操作的,https://blog.csdn.net/qq_67105081/article/details/137519207

使用nvidia-smi 在cmd上:我的cuda是cuda version 13.0

2.我后续装安装cuda及cudnn是装的12.8

cuda链接:https://developer.nvidia.com/cuda-toolkit-archive

然后去cudnn:https://developer.nvidia.com/rdp/cudnn-archive下载cudnn

3.装好cudnn和cuda后显示使用 nvcc -V指令后:

4.在装annaconda和pycharm后,创建conda环境

bash 复制代码
conda create -n yolov12 python=3.9

5.最关键的一步来了,去pytorch官网(https://pytorch.org/)
找到这个网址(https://download.pytorch.org/whl/cu128)进去:

然后找到torch进去:

找到这个版本 https://download.pytorch.org/whl/torch/torch-2.8.0+cu128-cp39-cp39-win_amd64.whl进行下载。

在这个yolov12的conda环境下进行安装运行下面指令:

bash 复制代码
pip install  torch-2.8.0+cu128-cp39-cp39-win_amd64.whl #(我是绝对路径)

6.最后运行这个指令:

bash 复制代码
pip3 install torch torchvision --index-url https://download.pytorch.org/whl/cu128

按照上述安排我的问题就可以匹配解决了。

我主要是参考了这个博主,非常感谢他。
https://blog.csdn.net/xiaoyanboke/article/details/149910509?spm=1001.2101.3001.6650.2&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ECtr-2-149910509-blog-151177663.235%5Ev43%5Epc_blog_bottom_relevance_base9&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ECtr-2-149910509-blog-151177663.235%5Ev43%5Epc_blog_bottom_relevance_base9&utm_relevant_index=4

相关推荐
小鸡吃米…28 分钟前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫1 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)1 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan1 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维1 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS1 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd2 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
njsgcs2 小时前
ue python二次开发启动教程+ 导入fbx到指定文件夹
开发语言·python·unreal engine·ue
io_T_T2 小时前
迭代器 iteration、iter 与 多线程 concurrent 交叉实践(详细)
python
水如烟2 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能