VideoChat-Flash论文阅读

论文发布时间: 2025年7月13日

1.摘要

background

处理长时程视频(如电影、在线直播等)是多模态大语言模型(MLLM)的一项关键能力,但目前仍极具挑战性。其核心困难在于,长视频会产生海量的视觉Token(例如,Gemini 1.5-Pro处理一小时视频会产生近百万Token),这带来了巨大的计算和内存开销,使得模型难以高效地理解和处理长视频的上下文信息。

innovation

为了解决这一挑战,本文提出了一个名为 VideoChat-Flash 的全新视频MLLM,其贡献是系统性的,涵盖了模型架构、训练数据、训练策略和评估基准。

1.分层视频Token压缩 (HiCo):这是核心的架构创新。它将视频压缩分为两个层级:

片段级 (Clip-level) :在视频编码阶段,利用视频帧间的时空冗余,通过视频编码器(UMT)和相似Token合并技术,实现对每个视频片段的极致压缩,压缩比高达约 1/50,且几乎没有性能损失。

视频级 (Video-level):在LLM推理阶段,利用LLM处理长视频时注意力(Attention)的稀疏性,在浅层网络中均匀丢弃部分视觉Token,在深层网络中根据文本引导保留关键Token,进一步降低计算量。

2.多阶段"从短到长"的学习策略:设计了一套课程学习方案,让模型先从图像和短视频中学习基础的视觉感知能力,再通过与长视频数据的联合训练,逐步扩展其处理长时程上下文的能力。

3.大规模长视频数据集 (LongVid):为解决长视频训练数据不足的问题,构建了一个包含30万小时视频和20亿单词文本标注的大规模数据集。

4.更具挑战性的评估基准 ("Multi-Hop Needle-In-A-Video-Haystack"):提出了一个新的"大海捞针"测试,它要求模型在视频中根据一系列线索进行多步推理才能找到最终的"针",比传统的单步检索任务更能评估模型的复杂推理能力。

  1. 方法 Method

总体流程 (Pipeline)

VideoChat-Flash的流程如图3所示,是一个高效处理长视频的流水线。首先,对输入的长视频进行基于时长的采样 (短视频采得密,长视频采得疏);然后,将采样后的帧序列分割成多个片段 (Clips) ;每个片段独立地经过一个共享的视频编码器 和一个连接器 进行片段级压缩 ,将大量帧信息压缩成极少量的Token;所有片段的压缩Token被拼接起来,送入大语言模型(LLM);在LLM的推理过程中,再进行视频级压缩(即渐进式视觉Token丢弃),最终根据用户的问题生成回答。

各模块详解

输入 (Input):原始长视频文件 + 用户提出的自然语言问题。

片段级压缩 (Clip-level Compression)

输入:一个视频片段(例如4帧图像)。

做法 :使用一个带有时空注意力 机制的视频编码器(UMT-L)来聚合帧间信息,然后通过一个无参数的相似Token合并操作,将高度相似的Token融合成一个。

输出:每个片段的高度浓缩的视觉Token序列(例如,平均每帧只用16个Token表示)。

视频级压缩 (Video-level Compression / Progressive Visual Dropout)

输入:拼接好的、来自所有片段的视觉Token序列。

做法 :这是一个在LLM内部进行的动态压缩。在LLM的浅层(例如前4层),均匀随机 地丢弃一部分Token以减少计算量,同时保留视频的整体时空结构;在LLM的深层(例如第18层之后),根据文本Token对视觉Token的注意力得分来保留最相关的Token。

输出:在LLM深层中,一个更短、更聚焦于任务相关信息的视觉Token序列。

多阶段短到长学习

阶段一:视觉-语言对齐。冻结视觉编码器和LLM,只训练连接器,对齐视觉特征和语言空间。

阶段二:短视频预训练。在大量图像和短视频数据上进行预训练,增强模型的基础视觉理解能力。

阶段三:长短视频联合指令微调。混合短视频和长视频数据,让模型同时保持对细节的感知和对长上下文的理解。

阶段四:高效高分辨率后微调。在少量数据上对视觉编码器进行高分辨率微调,提升模型对高清视频的感知能力。

输出 (Output):针对问题的自然语言回答。

  1. 实验 Experimental Results

实验数据集

通用视频理解基准:使用了包括MVBench, Perception Test (短视频), LongVideoBench, MLVU, LVBench (长视频) 以及综合性的VideoMME在内的多个主流基准。

特定任务基准:Charades-STA (时序定位), AuroraCap (视频字幕)。

长上下文评估基准:Needle-in-A-Video-Haystack (NIAH) 和本文提出的 Multi-Hop NIAH。

实验结论

1.性能领先:在各大视频问答基准上,VideoChat-Flash的7B模型在开源模型中取得了最佳性能,甚至在多个任务上超过了更大规模的闭源模型,如Gemini 1.5-Pro和GPT-4o(见Table 1)。

2.极致的效率:实验证明,HiCo压缩机制极其有效。在处理10000帧的长视频时,VideoChat-Flash的计算量(FLOPs)比LongVILA低了两个数量级,并且是唯一一个能在一张A100-80G显卡上完成推理的模型,而其他模型均因显存溢出(oom)而失败(见Table 6)。

3.各设计模块的有效性:消融实验(见Table 2)清晰地证明了HiCo压缩、时长自适应采样、短到长学习策略等每一个设计都对最终的性能提升做出了关键贡献。

4.强大的长上下文推理能力:在单步NIAH测试中,VideoChat-Flash在10000帧的视频中实现了99.1%的检索准确率。在更难的多步MH-NIAH测试中,其性能也远超基线模型,证明了其强大的长程逻辑推理能力。

  1. 总结 Conclusion

本文提供了一个解决长视频理解挑战的全栈式解决方案 。其核心思想是,通过智能且极致的分层压缩,可以在几乎不牺牲性能的前提下,将长视频的视觉信息压缩到极低的水平,从而根本性地解决了计算和内存瓶颈,使得高效、深入地理解长达数小时的视频成为可能。

相关推荐
悟乙己2 小时前
基于AWS Lambda的机器学习动态定价系统 CI/CD管道部署方案介绍
机器学习·ci/cd·aws
周杰伦_Jay2 小时前
【图文详解】强化学习核心框架、数学基础、分类、应用场景
人工智能·科技·算法·机器学习·计算机视觉·分类·数据挖掘
Teacher.chenchong2 小时前
基于PyTorch深度学习无人机遥感影像目标检测、地物分类及语义分割实践技术应用
pytorch·深度学习·无人机
黄啊码2 小时前
Coze新品实测:当AI开始像产品经理思考,我和程序员吵架的次数少了
人工智能·agent·coze
jie*3 小时前
小杰机器学习(six)——概率论——1.均匀分布2.正态分布3.数学期望4.方差5.标准差6.多维随机变量及其分布
人工智能·机器学习·概率论
挽安学长3 小时前
通过 gaccode在国内使用ClaudeCode,Windows、Mac 用户配置指南!
人工智能
唐某人丶3 小时前
教你如何用 JS 实现 Agent 系统(3)—— 借鉴 Cursor 的设计模式实现深度搜索
前端·人工智能·aigc
weixin_457340213 小时前
RTX5060 Ti显卡安装cuda版本PyTorch踩坑记录
人工智能·pytorch·python
Stanford_11063 小时前
关于物联网的基础知识(四)——国内有代表性的物联网平台都有哪些?
人工智能·物联网·微信·微信公众平台·twitter·微信开放平台