Heteroskedasticity

Heteroskedasticity come from

The passage is describing heteroskedasticity , a situation where the variance of the error term ( ϵ\epsilonϵ ) is not constant but depends on the explanatory variable (x).

In ordinary regression we usually assume homoskedasticity: (Var(ϵ)=σ2\text{Var}(\epsilon) = \sigma^2Var(ϵ)=σ2), the same for all values of (x)(x)(x). But here, the idea is that when (x) is large in magnitude, the spread (variance) of the errors is also larger. In probabilistic terms, if (Var(ϵ)\text{Var}(\epsilon)Var(ϵ)) grows with (x), then the probability that (ϵ\epsilonϵ) takes on large positive or negative values increases as (x) increases.


Consequences of heteroskedasticity

the equation (221) is ∑i=1n(xi−xˉ)2\sum_{i=1}^n(x_{i}-\bar{x})^2∑i=1n(xi−xˉ)2 in the denominator

the equation (222) is [∑i=1n(xi−xˉ)2]2[\sum_{i=1}^n(x_{i}-\bar{x})^2]^2[∑i=1n(xi−xˉ)2]2 in the denominator

Detecting heteroskedasticity

Formal statistical tests

注意这里是对yiy_iyi的方差,也是error平方的期望.

下面这里是真实的error平方.

The White Test


1. White 检验的特点

  • 不需要假设异方差的具体形式

    和 Breusch--Pagan 不同,BP 假设方差和解释变量的线性关系;White 则允许更一般的关系(比如平方项、交互项),所以更灵活。

  • 不要求误差服从正态分布

    White 检验基于大样本渐近理论,不依赖于正态性假设。

2. 局限性

  • 拒绝零假设 ≠ 一定有异方差

    White 检验本质上是在检验"模型是否被正确设定"。所以如果模型有遗漏变量、函数形式错了,它也可能拒绝零假设。

    换句话说,它可能把"模型设定错误"当成"异方差"。

  • 过于一般

    • 优点:几乎任何形式的异方差都能检测出来。

    • 缺点:敏感度太高,有时会报"假阳性",让人以为是异方差,实际上是模型设定的问题。

相关推荐
科研小白_2 天前
基于遗传算法优化BP神经网络(GA-BP)的数据时序预测
人工智能·算法·回归
数据科学作家4 天前
有序逻辑回归的概念、适用场景、数据要求,以及其在Stata中的操作命令及注意事项,Stata ologit回归结果怎么看?并附详细示例
数据分析·回归·逻辑回归·统计分析·stata·统计学·计量经济学
JJJJ_iii4 天前
【机器学习03】学习率与特征工程、多项式回归、逻辑回归
人工智能·pytorch·笔记·学习·机器学习·回归·逻辑回归
云端FFF4 天前
论文理解 【LLM-回归】—— Decoding-based Regression
人工智能·数据挖掘·回归
过往入尘土7 天前
回归与分类算法全解析:从理论到实践
分类·数据挖掘·回归
rengang6610 天前
08-决策树:探讨基于树结构的分类和回归方法及其优缺点
人工智能·算法·决策树·机器学习·分类·回归
无风听海11 天前
神经网络之为什么回归任务的输出是高斯分布的均值
神经网络·均值算法·回归
大美B端工场-B端系统美颜师16 天前
从“如何画”到“为何画”:AIGC倒逼UI设计师回归设计本源
ui·回归·aigc
金井PRATHAMA18 天前
逻辑的回归——一阶谓词逻辑及其变体在自然语言处理深层语义分析中的作用与前瞻
人工智能·机器学习·自然语言处理·数据挖掘·回归·知识图谱
芒果量化18 天前
ML4T - 第7章第5节 用线性回归预测股票回报Prediction stock returns with linear regression
算法·回归·线性回归