Heteroskedasticity

Heteroskedasticity come from

The passage is describing heteroskedasticity , a situation where the variance of the error term ( ϵ\epsilonϵ ) is not constant but depends on the explanatory variable (x).

In ordinary regression we usually assume homoskedasticity: (Var(ϵ)=σ2\text{Var}(\epsilon) = \sigma^2Var(ϵ)=σ2), the same for all values of (x)(x)(x). But here, the idea is that when (x) is large in magnitude, the spread (variance) of the errors is also larger. In probabilistic terms, if (Var(ϵ)\text{Var}(\epsilon)Var(ϵ)) grows with (x), then the probability that (ϵ\epsilonϵ) takes on large positive or negative values increases as (x) increases.


Consequences of heteroskedasticity

the equation (221) is ∑i=1n(xi−xˉ)2\sum_{i=1}^n(x_{i}-\bar{x})^2∑i=1n(xi−xˉ)2 in the denominator

the equation (222) is [∑i=1n(xi−xˉ)2]2[\sum_{i=1}^n(x_{i}-\bar{x})^2]^2[∑i=1n(xi−xˉ)2]2 in the denominator

Detecting heteroskedasticity

Formal statistical tests

注意这里是对yiy_iyi的方差,也是error平方的期望.

下面这里是真实的error平方.

The White Test


1. White 检验的特点

  • 不需要假设异方差的具体形式

    和 Breusch--Pagan 不同,BP 假设方差和解释变量的线性关系;White 则允许更一般的关系(比如平方项、交互项),所以更灵活。

  • 不要求误差服从正态分布

    White 检验基于大样本渐近理论,不依赖于正态性假设。

2. 局限性

  • 拒绝零假设 ≠ 一定有异方差

    White 检验本质上是在检验"模型是否被正确设定"。所以如果模型有遗漏变量、函数形式错了,它也可能拒绝零假设。

    换句话说,它可能把"模型设定错误"当成"异方差"。

  • 过于一般

    • 优点:几乎任何形式的异方差都能检测出来。

    • 缺点:敏感度太高,有时会报"假阳性",让人以为是异方差,实际上是模型设定的问题。

相关推荐
【建模先锋】12 小时前
基于CNN-SENet+SHAP分析的回归预测模型!
人工智能·python·回归·cnn·回归预测·特征可视化·shap 可视化分析
光羽隹衡14 小时前
机器学习——决策树之回归树
决策树·机器学习·回归
DeeGLMath17 小时前
机器学习中回归训练的示例
人工智能·机器学习·回归
黑客思维者17 小时前
机器学习011:监督学习【回归算法】(多项式回归)-- 从“猜咖啡温度”到预测万物
人工智能·学习·机器学习·回归·线性回归·监督学习·多项式回归
黑客思维者17 小时前
机器学习010:监督学习【回归算法】(Lasso回归)-- 用“魔法剪刀”找到真正重要的信息
人工智能·学习·机器学习·回归·监督学习·回归算法·lasso
黑客思维者1 天前
机器学习007:监督学习【回归算法】(线性回归)--股票背后的预测学
学习·机器学习·回归·线性回归·监督学习
黑客思维者2 天前
机器学习009:监督学习【回归算法】(岭回归)-- 给模型一个“清醒”的约束
学习·机器学习·回归·监督学习·岭回归
简简单单做算法3 天前
基于PSO优化CNN-BiLSTM网络模型的多输入单输出回归预测算法matlab仿真
matlab·回归·cnn·回归预测·cnn-bilstm·pso-cnn-bilstm
子夜江寒3 天前
决策树与回归树简介:原理、实现与应用
算法·决策树·回归
铅笔侠_小龙虾3 天前
深度学习--阶段总结(1)
人工智能·深度学习·ai·回归