Heteroskedasticity

Heteroskedasticity come from

The passage is describing heteroskedasticity , a situation where the variance of the error term ( ϵ\epsilonϵ ) is not constant but depends on the explanatory variable (x).

In ordinary regression we usually assume homoskedasticity: (Var(ϵ)=σ2\text{Var}(\epsilon) = \sigma^2Var(ϵ)=σ2), the same for all values of (x)(x)(x). But here, the idea is that when (x) is large in magnitude, the spread (variance) of the errors is also larger. In probabilistic terms, if (Var(ϵ)\text{Var}(\epsilon)Var(ϵ)) grows with (x), then the probability that (ϵ\epsilonϵ) takes on large positive or negative values increases as (x) increases.


Consequences of heteroskedasticity

the equation (221) is ∑i=1n(xi−xˉ)2\sum_{i=1}^n(x_{i}-\bar{x})^2∑i=1n(xi−xˉ)2 in the denominator

the equation (222) is [∑i=1n(xi−xˉ)2]2[\sum_{i=1}^n(x_{i}-\bar{x})^2]^2[∑i=1n(xi−xˉ)2]2 in the denominator

Detecting heteroskedasticity

Formal statistical tests

注意这里是对yiy_iyi的方差,也是error平方的期望.

下面这里是真实的error平方.

The White Test


1. White 检验的特点

  • 不需要假设异方差的具体形式

    和 Breusch--Pagan 不同,BP 假设方差和解释变量的线性关系;White 则允许更一般的关系(比如平方项、交互项),所以更灵活。

  • 不要求误差服从正态分布

    White 检验基于大样本渐近理论,不依赖于正态性假设。

2. 局限性

  • 拒绝零假设 ≠ 一定有异方差

    White 检验本质上是在检验"模型是否被正确设定"。所以如果模型有遗漏变量、函数形式错了,它也可能拒绝零假设。

    换句话说,它可能把"模型设定错误"当成"异方差"。

  • 过于一般

    • 优点:几乎任何形式的异方差都能检测出来。

    • 缺点:敏感度太高,有时会报"假阳性",让人以为是异方差,实际上是模型设定的问题。

相关推荐
山楂树の12 小时前
计算机图形学 模型矩阵的逆矩阵:如何从“世界”回归“局部”?
线性代数·矩阵·回归
赤狐先生15 小时前
NO.1一个线性回归模型 - 用colab的第一步
算法·回归·线性回归
应用市场15 小时前
基于稠密对应关系的3D人体网格回归技术详解
3d·数据挖掘·回归
JnnRrfmk3 天前
SY8105:一款犀利的5A同步降压DC-DC转换器
回归
week_泽3 天前
GBDT 算法中构建第一个弱学习器(CART 回归树)-计算示例
学习·算法·回归·gbdt
机器学习之心3 天前
TCN-Transformer-BiLSTM组合模型回归+SHAP分析+新数据预测+多输出!深度学习可解释分析MATLAB代码
深度学习·回归·transformer·shap分析·新数据预测
机器学习之心3 天前
Stacking集成传统机器学习模型与新型KAN网络回归预测+五模型回归对比
人工智能·机器学习·回归·stacking集成·kan网络回归预测
coding者在努力3 天前
美赛数学建模速成二:时间序列回归预测模型详细讲解(超全面版本附代码示例)
数学建模·数据挖掘·回归
byzh_rc3 天前
[数学建模从入门到入土] 预测模型
人工智能·深度学习·线性代数·数学建模·回归·ar
byzh_rc4 天前
[数学建模从入门到入土] 评价模型
网络·人工智能·深度学习·数学建模·回归·ar