Heteroskedasticity

Heteroskedasticity come from

The passage is describing heteroskedasticity , a situation where the variance of the error term ( ϵ\epsilonϵ ) is not constant but depends on the explanatory variable (x).

In ordinary regression we usually assume homoskedasticity: (Var(ϵ)=σ2\text{Var}(\epsilon) = \sigma^2Var(ϵ)=σ2), the same for all values of (x)(x)(x). But here, the idea is that when (x) is large in magnitude, the spread (variance) of the errors is also larger. In probabilistic terms, if (Var(ϵ)\text{Var}(\epsilon)Var(ϵ)) grows with (x), then the probability that (ϵ\epsilonϵ) takes on large positive or negative values increases as (x) increases.


Consequences of heteroskedasticity

the equation (221) is ∑i=1n(xi−xˉ)2\sum_{i=1}^n(x_{i}-\bar{x})^2∑i=1n(xi−xˉ)2 in the denominator

the equation (222) is [∑i=1n(xi−xˉ)2]2[\sum_{i=1}^n(x_{i}-\bar{x})^2]^2[∑i=1n(xi−xˉ)2]2 in the denominator

Detecting heteroskedasticity

Formal statistical tests

注意这里是对yiy_iyi的方差,也是error平方的期望.

下面这里是真实的error平方.

The White Test


1. White 检验的特点

  • 不需要假设异方差的具体形式

    和 Breusch--Pagan 不同,BP 假设方差和解释变量的线性关系;White 则允许更一般的关系(比如平方项、交互项),所以更灵活。

  • 不要求误差服从正态分布

    White 检验基于大样本渐近理论,不依赖于正态性假设。

2. 局限性

  • 拒绝零假设 ≠ 一定有异方差

    White 检验本质上是在检验"模型是否被正确设定"。所以如果模型有遗漏变量、函数形式错了,它也可能拒绝零假设。

    换句话说,它可能把"模型设定错误"当成"异方差"。

  • 过于一般

    • 优点:几乎任何形式的异方差都能检测出来。

    • 缺点:敏感度太高,有时会报"假阳性",让人以为是异方差,实际上是模型设定的问题。

相关推荐
qq_254674415 小时前
回归、分类、聚类
分类·回归·聚类
罗不丢16 小时前
自回归模型例题(AR)与ACF/PACF图绘制
数据挖掘·回归·ar·acf·pacf
机器学习之心17 小时前
MATLAB遗传算法优化RVFL神经网络回归预测(随机函数链接神经网络)
神经网络·matlab·回归
R-G-B3 天前
【P27 回归算法及应用实践】有监督的机器学习、分类与回归、一元线性回归、最小二乘法、多元回归与梯度下降、学习率
人工智能·回归·最小二乘法·梯度下降·一元线性回归·有监督的机器学习·分类与回归
abcwoabcwo4 天前
回归、预测、分类三者关系
分类·数据挖掘·回归
大数据魔法师4 天前
分类与回归算法(二) - 线性回归
分类·回归·线性回归
大数据魔法师6 天前
分类与回归算法(一)- 模型评价指标
分类·数据挖掘·回归
husterlichf8 天前
机器学习核心概念详解(回归、分类和聚类)
机器学习·分类·回归·聚类
搞科研的小刘选手8 天前
【经济方向专题会议】第二届经济数据分析与人工智能国际学术会议 (EDAI 2025)
人工智能·机器学习·网络安全·大数据分析·经济·经济数据分析·绿色经济
北数云8 天前
北数云|利用Limix模型对tabular-benchmark数据集实现分类和回归任务
分类·数据挖掘·回归·gpu算力