RV1126 RKNN环境搭建记录

RV1126 RKNN环境搭建记录

下载资源

复制代码
https://github.com/rockchip-linux/rknn-toolkit
https://github.com/airockchip/rknn_model_zoo/tree/main/examples/yolov5

通过github下载 rknn-toolkit-v1.7.5-packages.tar.gz 搭建py环境

windows 环境

使用conda创建python3.6 需要cpu版本

复制代码
tensorflow==1.14.0
torch==1.10.0+cpu
torchvision==0.11.0+cpu
mxnet==1.5.0

opencv的安装

复制代码
pip install opencv-python==4.5.4.60

安装 rknn_toolkit-1.7.5-cp36-cp36m-win_amd64.whl

其中onnx相关的库onnxoptimizer需要cmake环境来重新编译,vs2022 c++也需要存在

windows USB OTG

需要adb与NTB, 安装rknn中的 zadig-2.4.exe 可能需要重启系统.

查询设备列表

复制代码
from rknn.api import RKNN

if __name__ == '__main__':
    rknn = RKNN()
    devices = rknn.list_devices()
    print(devices)
    rknn.release()

会显示出:

复制代码
*************************
all device(s) with ntb mode:
e97ee02154b70c05
*************************

Yolov5模型转换

参考 https://github.com/airockchip/rknn_model_zoo 中的yolov5转rknn脚本 convert.py

pt模型转onnx

yolov5(6.0) 这是单独的python环境,与上面不一样

复制代码
python export.py --weights %file% --img 640 --device cpu --include onnx --batch-size 1  --train --opset 12

我转换出的模型是3输出

转换

复制代码
python convert.py yolov5.onnx rv1126 fp

其模型信息是FP16的输入输出,推理一张图片太慢了6秒多

复制代码
==input=================
index=0, name=images_208, n_dims=4, n_elems=1228800, size=2457600, fmt=NCHW(0), type=FP16(1), qnt_type=NONE(0), zp=112863, scale=0.000000
640,640,3,1,

==output 0=================
index=0, name=Transpose_Transpose_217/out0_0, n_dims=5, n_elems=1632000, size=3264000, fmt=NCHW(0), type=FP16(1), qnt_type=NONE(0), zp=112863, scale=0.000000
85,80,80,3,1,
==output 1=================
index=1, name=Transpose_Transpose_231/out0_1, n_dims=5, n_elems=408000, size=816000, fmt=NCHW(0), type=FP16(1), qnt_type=NONE(0), zp=112863, scale=0.000000
85,40,40,3,1,
==output 2=================
index=2, name=Transpose_Transpose_245/out0_2, n_dims=5, n_elems=102000, size=204000, fmt=NCHW(0), type=FP16(1), qnt_type=NONE(0), zp=112863, scale=0.000000
85,20,20,3,1,

如何量化与预编译

复制代码
python convert.py yolov5.onnx 

==input=================
index=0, name=images_208, n_dims=4, n_elems=1228800, size=1228800, fmt=NCHW(0), type=UINT8(3), qnt_type=AFFINE(2), zp=0, scale=0.003922
640,640,3,1

==output 0=================
index=0, name=Transpose_Transpose_217/out0_0, n_dims=5, n_elems=1632000, size=1632000, fmt=NCHW(0), type=UINT8(3), qnt_type=AFFINE(2), zp=184, scale=0.098818
85,80,80,3,1
==output 1=================
index=1, name=Transpose_Transpose_231/out0_1, n_dims=5, n_elems=408000, size=408000, fmt=NCHW(0), type=UINT8(3), qnt_type=AFFINE(2), zp=167, scale=0.081664
85,40,40,3,1
==output 2=================
index=2, name=Transpose_Transpose_245/out0_2, n_dims=5, n_elems=102000, size=102000, fmt=NCHW(0), type=UINT8(3), qnt_type=AFFINE(2), zp=163, scale=0.078188
85,20,20,3,1
==output process u8=========
大约299毫秒
如何验证推理结果..
相关推荐
AI浩6 小时前
PAB-Mamba-YoLo: VSSM 辅助 YOLO 用于断奶仔猪攻击行为检测
yolo
NCU_wander10 小时前
rnn lstm transformer mamba
rnn·lstm·transformer
王哈哈^_^15 小时前
【完整源码+数据集】草莓数据集,yolov8草莓成熟度检测数据集 3207 张,草莓成熟度数据集,目标检测草莓识别算法系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
王哈哈^_^1 天前
YOLOv11视觉检测实战:安全距离测算全解析
人工智能·数码相机·算法·yolo·计算机视觉·目标跟踪·视觉检测
深度学习lover1 天前
<数据集>yolo航拍交通目标识别数据集<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·航拍交通目标识别
Coovally AI模型快速验证1 天前
视觉语言模型(VLM)深度解析:如何用它来处理文档
人工智能·yolo·目标跟踪·语言模型·自然语言处理·开源
王哈哈^_^1 天前
【数据集+完整源码】水稻病害数据集,yolov8水稻病害检测数据集 6715 张,目标检测水稻识别算法实战训推教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
qzhqbb1 天前
神经网络 - 循环神经网络
人工智能·rnn·神经网络
像风一样的男人@2 天前
python --两个文件夹文件名比对(yolo 图和label标注比对检查)
windows·python·yolo
java1234_小锋2 天前
PyTorch2 Python深度学习 - 循环神经网络(RNN)实例
python·rnn·深度学习·pytorch2