在一些限制条件下,没有办法使用stl的容器,只能手搓。万幸的是很多成熟的开源库已经提供了许多好用的轮子,方便的同时也十分可靠(毕竟已经过实践检验)。比如libevent源码中有一组关于树的宏定义,可帮助我们快速实现一棵红黑树。它的源码如下:
cpp
/* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
/*
* Copyright 2002 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _SYS_TREE_H_
#define _SYS_TREE_H_
/*
* This file defines data structures for different types of trees:
* splay trees and red-black trees.
*
* A splay tree is a self-organizing data structure. Every operation
* on the tree causes a splay to happen. The splay moves the requested
* node to the root of the tree and partly rebalances it.
*
* This has the benefit that request locality causes faster lookups as
* the requested nodes move to the top of the tree. On the other hand,
* every lookup causes memory writes.
*
* The Balance Theorem bounds the total access time for m operations
* and n inserts on an initially empty tree as O((m + n)lg n). The
* amortized cost for a sequence of m accesses to a splay tree is O(lg n);
*
* A red-black tree is a binary search tree with the node color as an
* extra attribute. It fulfills a set of conditions:
* - every search path from the root to a leaf consists of the
* same number of black nodes,
* - each red node (except for the root) has a black parent,
* - each leaf node is black.
*
* Every operation on a red-black tree is bounded as O(lg n).
* The maximum height of a red-black tree is 2lg (n+1).
*/
#define SPLAY_HEAD(name, type) \
struct name { \
struct type *sph_root; /* root of the tree */ \
}
#define SPLAY_INITIALIZER(root) \
{ NULL }
#define SPLAY_INIT(root) do { \
(root)->sph_root = NULL; \
} while (0)
#define SPLAY_ENTRY(type) \
struct { \
struct type *spe_left; /* left element */ \
struct type *spe_right; /* right element */ \
}
#define SPLAY_LEFT(elm, field) (elm)->field.spe_left
#define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
#define SPLAY_ROOT(head) (head)->sph_root
#define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
#define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (0)
#define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (0)
#define SPLAY_LINKLEFT(head, tmp, field) do { \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
} while (0)
#define SPLAY_LINKRIGHT(head, tmp, field) do { \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
} while (0)
#define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
} while (0)
/* Generates prototypes and inline functions */
#define SPLAY_PROTOTYPE(name, type, field, cmp) \
void name##_SPLAY(struct name *, struct type *); \
void name##_SPLAY_MINMAX(struct name *, int); \
struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
\
/* Finds the node with the same key as elm */ \
static __inline struct type * \
name##_SPLAY_FIND(struct name *head, struct type *elm) \
{ \
if (SPLAY_EMPTY(head)) \
return(NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) \
return (head->sph_root); \
return (NULL); \
} \
\
static __inline struct type * \
name##_SPLAY_NEXT(struct name *head, struct type *elm) \
{ \
name##_SPLAY(head, elm); \
if (SPLAY_RIGHT(elm, field) != NULL) { \
elm = SPLAY_RIGHT(elm, field); \
while (SPLAY_LEFT(elm, field) != NULL) { \
elm = SPLAY_LEFT(elm, field); \
} \
} else \
elm = NULL; \
return (elm); \
} \
\
static __inline struct type * \
name##_SPLAY_MIN_MAX(struct name *head, int val) \
{ \
name##_SPLAY_MINMAX(head, val); \
return (SPLAY_ROOT(head)); \
}
/* Main splay operation.
* Moves node close to the key of elm to top
*/
#define SPLAY_GENERATE(name, type, field, cmp) \
struct type * \
name##_SPLAY_INSERT(struct name *head, struct type *elm) \
{ \
if (SPLAY_EMPTY(head)) { \
SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
} else { \
int __comp; \
name##_SPLAY(head, elm); \
__comp = (cmp)(elm, (head)->sph_root); \
if(__comp < 0) { \
SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
SPLAY_RIGHT(elm, field) = (head)->sph_root; \
SPLAY_LEFT((head)->sph_root, field) = NULL; \
} else if (__comp > 0) { \
SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
SPLAY_LEFT(elm, field) = (head)->sph_root; \
SPLAY_RIGHT((head)->sph_root, field) = NULL; \
} else \
return ((head)->sph_root); \
} \
(head)->sph_root = (elm); \
return (NULL); \
} \
\
struct type * \
name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *__tmp; \
if (SPLAY_EMPTY(head)) \
return (NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) { \
if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
} else { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
name##_SPLAY(head, elm); \
SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
} \
return (elm); \
} \
return (NULL); \
} \
\
void \
name##_SPLAY(struct name *head, struct type *elm) \
{ \
struct type __node, *__left, *__right, *__tmp; \
int __comp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while ((__comp = (cmp)(elm, (head)->sph_root))) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) < 0){ \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) > 0){ \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
} \
\
/* Splay with either the minimum or the maximum element \
* Used to find minimum or maximum element in tree. \
*/ \
void name##_SPLAY_MINMAX(struct name *head, int __comp) \
{ \
struct type __node, *__left, *__right, *__tmp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while (1) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp < 0){ \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp > 0) { \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
}
#define SPLAY_NEGINF -1
#define SPLAY_INF 1
#define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
#define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
#define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
#define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
#define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
#define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
#define SPLAY_FOREACH(x, name, head) \
for ((x) = SPLAY_MIN(name, head); \
(x) != NULL; \
(x) = SPLAY_NEXT(name, head, x))
/* Macros that define a red-back tree */
#define RB_HEAD(name,keytype, type) \
struct name { \
struct type *rbh_root; /* root of the tree */ \
}
#define RB_INITIALIZER(root) \
{ NULL }
#define RB_INIT(root) do { \
(root)->rbh_root = NULL; \
} while (0)
#define RB_BLACK 0
#define RB_RED 1
#define RB_ENTRY(type) \
struct { \
struct type *rbe_left; /* left element */ \
struct type *rbe_right; /* right element */ \
struct type *rbe_parent; /* parent element */ \
int rbe_color; /* node color */ \
}
#define RB_LEFT(elm, field) (elm)->field.rbe_left
#define RB_RIGHT(elm, field) (elm)->field.rbe_right
#define RB_PARENT(elm, field) (elm)->field.rbe_parent
#define RB_COLOR(elm, field) (elm)->field.rbe_color
#define RB_ROOT(head) (head)->rbh_root
#define RB_EMPTY(head) (RB_ROOT(head) == NULL)
#define RB_SET(elm, parent, field) do { \
RB_PARENT(elm, field) = parent; \
RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
RB_COLOR(elm, field) = RB_RED; \
} while (0)
#define RB_SET_BLACKRED(black, red, field) do { \
RB_COLOR(black, field) = RB_BLACK; \
RB_COLOR(red, field) = RB_RED; \
} while (0)
#ifndef RB_AUGMENT
#define RB_AUGMENT(x)
#endif
#define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
(tmp) = RB_RIGHT(elm, field); \
if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field))) { \
RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
} \
RB_AUGMENT(elm); \
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
else \
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
RB_LEFT(tmp, field) = (elm); \
RB_PARENT(elm, field) = (tmp); \
RB_AUGMENT(tmp); \
if ((RB_PARENT(tmp, field))) \
RB_AUGMENT(RB_PARENT(tmp, field)); \
} while (0)
#define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
(tmp) = RB_LEFT(elm, field); \
if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field))) { \
RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
} \
RB_AUGMENT(elm); \
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
else \
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
RB_RIGHT(tmp, field) = (elm); \
RB_PARENT(elm, field) = (tmp); \
RB_AUGMENT(tmp); \
if ((RB_PARENT(tmp, field))) \
RB_AUGMENT(RB_PARENT(tmp, field)); \
} while (0)
/* Generates prototypes and inline functions */
#define RB_PROTOTYPE(name, keytype, type, field, cmp) \
void name##_RB_INSERT_COLOR(struct name *, struct type *); \
void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
struct type *name##_RB_REMOVE(struct name *, struct type *); \
struct type *name##_RB_INSERT(struct name *, struct type *); \
struct type *name##_RB_FIND(struct name *, struct keytype *); \
struct type *name##_RB_NEXT(struct type *); \
struct type *name##_RB_MINMAX(struct name *, int); \
\
/* Main rb operation.
* Moves node close to the key of elm to top
*/
#define RB_GENERATE(name, keytype, type, field, cmp) \
void \
name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
{ \
struct type *parent, *gparent, *tmp; \
while ((parent = RB_PARENT(elm, field)) && \
RB_COLOR(parent, field) == RB_RED) { \
gparent = RB_PARENT(parent, field); \
if (parent == RB_LEFT(gparent, field)) { \
tmp = RB_RIGHT(gparent, field); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field);\
elm = gparent; \
continue; \
} \
if (RB_RIGHT(parent, field) == elm) { \
RB_ROTATE_LEFT(head, parent, tmp, field);\
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_RIGHT(head, gparent, tmp, field); \
} else { \
tmp = RB_LEFT(gparent, field); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field);\
elm = gparent; \
continue; \
} \
if (RB_LEFT(parent, field) == elm) { \
RB_ROTATE_RIGHT(head, parent, tmp, field);\
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_LEFT(head, gparent, tmp, field); \
} \
} \
RB_COLOR(head->rbh_root, field) = RB_BLACK; \
} \
\
void \
name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
{ \
struct type *tmp; \
while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
elm != RB_ROOT(head)) { \
if (RB_LEFT(parent, field) == elm) { \
tmp = RB_RIGHT(parent, field); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_LEFT(head, parent, tmp, field);\
tmp = RB_RIGHT(parent, field); \
} \
if ((RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
(RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT(elm, field); \
} else { \
if (RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
struct type *oleft; \
if ((oleft = RB_LEFT(tmp, field)))\
RB_COLOR(oleft, field) = RB_BLACK;\
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_RIGHT(head, tmp, oleft, field);\
tmp = RB_RIGHT(parent, field); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_RIGHT(tmp, field)) \
RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
RB_ROTATE_LEFT(head, parent, tmp, field);\
elm = RB_ROOT(head); \
break; \
} \
} else { \
tmp = RB_LEFT(parent, field); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_RIGHT(head, parent, tmp, field);\
tmp = RB_LEFT(parent, field); \
} \
if ((RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
(RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT(elm, field); \
} else { \
if (RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
struct type *oright; \
if ((oright = RB_RIGHT(tmp, field)))\
RB_COLOR(oright, field) = RB_BLACK;\
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_LEFT(head, tmp, oright, field);\
tmp = RB_LEFT(parent, field); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_LEFT(tmp, field)) \
RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
RB_ROTATE_RIGHT(head, parent, tmp, field);\
elm = RB_ROOT(head); \
break; \
} \
} \
} \
if (elm) \
RB_COLOR(elm, field) = RB_BLACK; \
} \
\
struct type * \
name##_RB_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *child, *parent, *old = elm; \
int color; \
if (RB_LEFT(elm, field) == NULL) \
child = RB_RIGHT(elm, field); \
else if (RB_RIGHT(elm, field) == NULL) \
child = RB_LEFT(elm, field); \
else { \
struct type *left; \
elm = RB_RIGHT(elm, field); \
while ((left = RB_LEFT(elm, field))) \
elm = left; \
child = RB_RIGHT(elm, field); \
parent = RB_PARENT(elm, field); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT(child, field) = parent; \
if (parent) { \
if (RB_LEFT(parent, field) == elm) \
RB_LEFT(parent, field) = child; \
else \
RB_RIGHT(parent, field) = child; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = child; \
if (RB_PARENT(elm, field) == old) \
parent = elm; \
(elm)->field = (old)->field; \
if (RB_PARENT(old, field)) { \
if (RB_LEFT(RB_PARENT(old, field), field) == old)\
RB_LEFT(RB_PARENT(old, field), field) = elm;\
else \
RB_RIGHT(RB_PARENT(old, field), field) = elm;\
RB_AUGMENT(RB_PARENT(old, field)); \
} else \
RB_ROOT(head) = elm; \
RB_PARENT(RB_LEFT(old, field), field) = elm; \
if (RB_RIGHT(old, field)) \
RB_PARENT(RB_RIGHT(old, field), field) = elm; \
if (parent) { \
left = parent; \
do { \
RB_AUGMENT(left); \
} while ((left = RB_PARENT(left, field))); \
} \
goto color; \
} \
parent = RB_PARENT(elm, field); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT(child, field) = parent; \
if (parent) { \
if (RB_LEFT(parent, field) == elm) \
RB_LEFT(parent, field) = child; \
else \
RB_RIGHT(parent, field) = child; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = child; \
color: \
if (color == RB_BLACK) \
name##_RB_REMOVE_COLOR(head, parent, child); \
return (old); \
} \
\
/* Inserts a node into the RB tree */ \
struct type * \
name##_RB_INSERT(struct name *head, struct type *elm) \
{ \
struct type *tmp; \
struct type *parent = NULL; \
int comp = 0; \
tmp = RB_ROOT(head); \
while (tmp) { \
parent = tmp; \
comp = (cmp)((struct keytype*)(elm), (struct keytype*)(parent)); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
RB_SET(elm, parent, field); \
if (parent != NULL) { \
if (comp < 0) \
RB_LEFT(parent, field) = elm; \
else \
RB_RIGHT(parent, field) = elm; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = elm; \
name##_RB_INSERT_COLOR(head, elm); \
return (NULL); \
} \
\
/* Finds the node with the same key as elm */ \
struct type * \
name##_RB_FIND(struct name *head, struct keytype *elm) \
{ \
struct type *tmp = RB_ROOT(head); \
int comp; \
while (tmp) { \
comp = cmp(elm, (struct keytype*)(tmp)); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (NULL); \
} \
\
struct type * \
name##_RB_NEXT(struct type *elm) \
{ \
if (RB_RIGHT(elm, field)) { \
elm = RB_RIGHT(elm, field); \
while (RB_LEFT(elm, field)) \
elm = RB_LEFT(elm, field); \
} else { \
if (RB_PARENT(elm, field) && \
(elm == RB_LEFT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
else { \
while (RB_PARENT(elm, field) && \
(elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
elm = RB_PARENT(elm, field); \
elm = RB_PARENT(elm, field); \
} \
} \
return (elm); \
} \
\
struct type * \
name##_RB_MINMAX(struct name *head, int val) \
{ \
struct type *tmp = RB_ROOT(head); \
struct type *parent = NULL; \
while (tmp) { \
parent = tmp; \
if (val < 0) \
tmp = RB_LEFT(tmp, field); \
else \
tmp = RB_RIGHT(tmp, field); \
} \
return (parent); \
}
#define RB_NEGINF -1
#define RB_INF 1
#define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
#define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
#define RB_FIND(name, x, y) name##_RB_FIND(x, y)
#define RB_NEXT(name, x, y) name##_RB_NEXT(y)
#define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
#define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
#define RB_FOREACH(x, name, head) \
for ((x) = RB_MIN(name, head); \
(x) != NULL; \
(x) = name##_RB_NEXT(x))
#endif /* _SYS_TREE_H_ */
使用起来也十分方便,比如下面的小例子:
cpp
// main.cpp
#include <iostream>
#include <chrono>
#include "tree.h"
struct RBTreeKey
{
int key;
};
struct RBTreeNode
{
RBTreeKey id;
char value;
RB_ENTRY(RBTreeNode) entry;
};
int RBTreeCmp(RBTreeKey*a, RBTreeKey*b)
{
if (a->key < b->key) return -1;
if (a->key > b->key) return 1;
return 0;
}
RB_HEAD(MyTree, RBTreeKey, RBTreeNode);
RB_PROTOTYPE(MyTree, RBTreeKey, RBTreeNode, entry, RBTreeCmp);
RB_GENERATE(MyTree, RBTreeKey, RBTreeNode, entry, RBTreeCmp);
int main()
{
std::cout << "Hello RbTree!\n";
struct MyTree head = RB_INITIALIZER(&head);
RBTreeNode n1,n2,n3;
n1.id.key = 10,n2.id.key=5,n3.id.key=15;
n1.value = 1, n2.value = 2, n3.value = 3;
RB_INSERT(MyTree,&head,&n1);//增
RB_INSERT(MyTree, &head, &n2);
RB_INSERT(MyTree, &head, &n3);
RBTreeKey find = {5};
RBTreeNode* found = RB_FIND(MyTree,&head,&find);//查
RBTreeNode* node = nullptr;
RB_FOREACH(node, MyTree, &head)//遍历
{
std::cout << "Node Key: " << node->id.key << std::endl;
}
RB_REMOVE(MyTree,&head,found);//删除
RB_FOREACH(node, MyTree, &head)
{
std::cout << "Node Key: " << node->id.key << std::endl;
}
std::cout << "Hello World!\n";
return 0;
}
为了可以支持整棵红黑树的网络传播,存盘,进程共享,需要对树结构中的指针进行归一化,即指针统一用偏移量表示,叠加基地址访问。对上述红黑树相关的宏进行修改如下:
/* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
/*
* Copyright 2002 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _SYS_TREE_H_
#define _SYS_TREE_H_
/*
* This file defines data structures for different types of trees:
* splay trees and red-black trees.
*
* A splay tree is a self-organizing data structure. Every operation
* on the tree causes a splay to happen. The splay moves the requested
* node to the root of the tree and partly rebalances it.
*
* This has the benefit that request locality causes faster lookups as
* the requested nodes move to the top of the tree. On the other hand,
* every lookup causes memory writes.
*
* The Balance Theorem bounds the total access time for m operations
* and n inserts on an initially empty tree as O((m + n)lg n). The
* amortized cost for a sequence of m accesses to a splay tree is O(lg n);
*
* A red-black tree is a binary search tree with the node color as an
* extra attribute. It fulfills a set of conditions:
* - every search path from the root to a leaf consists of the
* same number of black nodes,
* - each red node (except for the root) has a black parent,
* - each leaf node is black.
*
* Every operation on a red-black tree is bounded as O(lg n).
* The maximum height of a red-black tree is 2lg (n+1).
*/
#define SPLAY_HEAD(name, type) \
struct name { \
struct type *sph_root; /* root of the tree */ \
}
#define SPLAY_INITIALIZER(root) \
{ NULL }
#define SPLAY_INIT(root) do { \
(root)->sph_root = NULL; \
} while (0)
#define SPLAY_ENTRY(type) \
struct { \
struct type *spe_left; /* left element */ \
struct type *spe_right; /* right element */ \
}
#define SPLAY_LEFT(elm, field) (elm)->field.spe_left
#define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
#define SPLAY_ROOT(head) (head)->sph_root
#define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
#define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (0)
#define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (0)
#define SPLAY_LINKLEFT(head, tmp, field) do { \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
} while (0)
#define SPLAY_LINKRIGHT(head, tmp, field) do { \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
} while (0)
#define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
} while (0)
/* Generates prototypes and inline functions */
#define SPLAY_PROTOTYPE(name, type, field, cmp) \
void name##_SPLAY(struct name *, struct type *); \
void name##_SPLAY_MINMAX(struct name *, int); \
struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
\
/* Finds the node with the same key as elm */ \
static __inline struct type * \
name##_SPLAY_FIND(struct name *head, struct type *elm) \
{ \
if (SPLAY_EMPTY(head)) \
return(NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) \
return (head->sph_root); \
return (NULL); \
} \
\
static __inline struct type * \
name##_SPLAY_NEXT(struct name *head, struct type *elm) \
{ \
name##_SPLAY(head, elm); \
if (SPLAY_RIGHT(elm, field) != NULL) { \
elm = SPLAY_RIGHT(elm, field); \
while (SPLAY_LEFT(elm, field) != NULL) { \
elm = SPLAY_LEFT(elm, field); \
} \
} else \
elm = NULL; \
return (elm); \
} \
\
static __inline struct type * \
name##_SPLAY_MIN_MAX(struct name *head, int val) \
{ \
name##_SPLAY_MINMAX(head, val); \
return (SPLAY_ROOT(head)); \
}
/* Main splay operation.
* Moves node close to the key of elm to top
*/
#define SPLAY_GENERATE(name, type, field, cmp) \
struct type * \
name##_SPLAY_INSERT(struct name *head, struct type *elm) \
{ \
if (SPLAY_EMPTY(head)) { \
SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
} else { \
int __comp; \
name##_SPLAY(head, elm); \
__comp = (cmp)(elm, (head)->sph_root); \
if(__comp < 0) { \
SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
SPLAY_RIGHT(elm, field) = (head)->sph_root; \
SPLAY_LEFT((head)->sph_root, field) = NULL; \
} else if (__comp > 0) { \
SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
SPLAY_LEFT(elm, field) = (head)->sph_root; \
SPLAY_RIGHT((head)->sph_root, field) = NULL; \
} else \
return ((head)->sph_root); \
} \
(head)->sph_root = (elm); \
return (NULL); \
} \
\
struct type * \
name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *__tmp; \
if (SPLAY_EMPTY(head)) \
return (NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) { \
if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
} else { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
name##_SPLAY(head, elm); \
SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
} \
return (elm); \
} \
return (NULL); \
} \
\
void \
name##_SPLAY(struct name *head, struct type *elm) \
{ \
struct type __node, *__left, *__right, *__tmp; \
int __comp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while ((__comp = (cmp)(elm, (head)->sph_root))) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) < 0){ \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) > 0){ \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
} \
\
/* Splay with either the minimum or the maximum element \
* Used to find minimum or maximum element in tree. \
*/ \
void name##_SPLAY_MINMAX(struct name *head, int __comp) \
{ \
struct type __node, *__left, *__right, *__tmp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while (1) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp < 0){ \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp > 0) { \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
}
#define SPLAY_NEGINF -1
#define SPLAY_INF 1
#define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
#define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
#define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
#define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
#define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
#define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
#define SPLAY_FOREACH(x, name, head) \
for ((x) = SPLAY_MIN(name, head); \
(x) != NULL; \
(x) = SPLAY_NEXT(name, head, x))
/* Macros that define a red-back tree */
#define RB_HEAD(name, keytype, Type) \
struct name { \
UINT_PTR base;\
struct Type *rbh_root; /* root of the tree */ \
}
#define RB_INITIALIZER(mem, root) \
{ (UINT_PTR)(mem), NULL }
#define RB_INIT(name, Type, mem, root) do { \
(*((struct name*)(root))).base = (UINT_PTR)(mem);\
(*((struct name*)(root))).rbh_root = NULL; \
} while (0)
#define RB_BLACK 0
#define RB_RED 1
#define RB_ENTRY(Type) \
struct { \
struct Type *rbe_left; /* left element */ \
struct Type *rbe_right; /* right element */ \
struct Type *rbe_parent; /* parent element */ \
int rbe_color; /* node color */ \
int rbe_size; /* subtree size*/\
}
#define RB_LEFT_GET(Type, elm, field, head) ((elm)->field.rbe_left != NULL ? (struct Type*)((char*)((elm)->field.rbe_left) + (head)->base) : NULL)
#define RB_LEFT_SET(Type, elm, field, head, left) ((elm)->field.rbe_left = (left != NULL )? (struct Type*)((char*)left - (head)->base): NULL)
#define RB_RIGHT_GET(Type, elm, field, head) ((elm)->field.rbe_right !=NULL ?(struct Type*)((char*)((elm)->field.rbe_right) + (head)->base): NULL)
#define RB_RIGHT_SET(Type, elm, field, head, right) ((elm)->field.rbe_right = (right != NULL )? (struct Type*)((char*)right - (head)->base): NULL)
#define RB_PARENT_GET(Type, elm, field, head) ((elm)->field.rbe_parent != NULL ? (struct Type*)((char*)((elm)->field.rbe_parent) + (head)->base): NULL)
#define RB_PARENT_SET(Type, elm, field, head, parent) ((elm)->field.rbe_parent = (parent !=NULL )? (struct Type*)((char*)parent - (head)->base): NULL)
#define RB_COLOR(elm, field) (elm)->field.rbe_color
#define RB_ROOT_GET(Type, head) ((head)->rbh_root != NULL ? (struct Type*)((char*)((head)->rbh_root) + (head)->base): NULL)
#define RB_ROOT_SET(Type, head, elm) ((head)->rbh_root = (elm != NULL) ? (struct Type*)((char*)elm - (head)->base): NULL)
#define RB_EMPTY(Type, head) (RB_ROOT_GET(Type, head) == NULL)
#define RB_SET(Type, elm, parent, field, head) do { \
RB_PARENT_SET(Type, elm, field, head, parent); \
RB_LEFT_SET(Type, elm, field, head, NULL); \
RB_RIGHT_SET(Type, elm, field, head, NULL); \
RB_COLOR(elm, field) = RB_RED; \
(elm)->field.rbe_size = 1;\
} while (0)
#define RB_SET_BLACKRED(black, red, field) do { \
RB_COLOR(black, field) = RB_BLACK; \
RB_COLOR(red, field) = RB_RED; \
} while (0)
#ifndef RB_AUGMENT
#define RB_AUGMENT(Type, elm, field, head) do{\
if(elm != NULL) \
{int left_size = RB_LEFT_GET(Type, elm, field, head) == NULL ? 0: (RB_LEFT_GET(Type, elm, field, head)->field).rbe_size;\
int right_size = RB_RIGHT_GET(Type, elm, field, head) == NULL ? 0: (RB_RIGHT_GET(Type, elm, field, head)->field).rbe_size;\
((elm)->field).rbe_size = left_size + right_size + 1;}}while(0)
#endif
#define RB_ROTATE_LEFT(head, Type, elm, tmp, field) do { \
(tmp) = RB_RIGHT_GET(Type, elm, field, head); \
RB_RIGHT_SET(Type, elm, field, head, RB_LEFT_GET(Type, tmp, field, head));\
if (NULL != RB_RIGHT_GET(Type, elm, field, head)) { \
RB_PARENT_SET(Type, RB_LEFT_GET(Type, tmp, field, head), field, head, elm); \
} \
RB_AUGMENT(Type, elm, field, head); \
RB_PARENT_SET(Type, tmp, field, head, RB_PARENT_GET(Type, elm, field, head)); \
if (NULL != RB_PARENT_GET(Type, tmp, field, head)) { \
if ((elm) == RB_LEFT_GET(Type, RB_PARENT_GET(Type, elm, field, head), field, head))\
{ \
RB_LEFT_SET(Type, RB_PARENT_GET(Type, elm, field, head), field, head, tmp); \
} \
else \
{ \
RB_RIGHT_SET(Type, RB_PARENT_GET(Type, elm, field, head), field, head, tmp); \
} \
} else \
RB_ROOT_SET(Type, head, tmp); \
RB_LEFT_SET(Type, tmp, field, head, elm); \
RB_PARENT_SET(Type, elm, field, head, tmp); \
RB_AUGMENT(Type, tmp, field, head); \
if ((RB_PARENT_GET(Type, tmp, field, head))) \
RB_AUGMENT(Type, RB_PARENT_GET(Type, tmp, field, head), field, head); \
} while (0)
#define RB_ROTATE_RIGHT(head, Type, elm, tmp, field) do { \
(tmp) = RB_LEFT_GET(Type, elm, field, head); \
RB_LEFT_SET(Type, elm, field, head, RB_RIGHT_GET(Type, tmp, field, head));\
if (NULL != RB_LEFT_GET(Type, elm, field, head)) { \
RB_PARENT_SET(Type, RB_RIGHT_GET(Type, tmp, field, head), field, head, elm); \
} \
RB_AUGMENT(Type, elm, field, head); \
RB_PARENT_SET(Type, tmp, field, head, RB_PARENT_GET(Type, elm, field, head));\
if (NULL != RB_PARENT_GET(Type, tmp, field, head)) { \
if ((elm) == RB_LEFT_GET(Type, RB_PARENT_GET(Type, elm, field, head), field, head)) \
RB_LEFT_SET(Type, RB_PARENT_GET(Type, elm, field, head), field, head, tmp); \
else \
RB_RIGHT_SET(Type, RB_PARENT_GET(Type, elm, field, head), field, head, tmp); \
} else \
RB_ROOT_SET(Type, head, tmp); \
RB_RIGHT_SET(Type, tmp, field, head, elm); \
RB_PARENT_SET(Type, elm, field, head, tmp); \
RB_AUGMENT(Type, tmp, field, head); \
if ((RB_PARENT_GET(Type, tmp, field, head))) \
RB_AUGMENT(Type, RB_PARENT_GET(Type, tmp, field, head), field, head); \
} while (0)
/* Generates prototypes and inline functions */
#define RB_PROTOTYPE(name, keytype, Type, field, cmp) \
void name##_RB_INSERT_COLOR(struct name *, struct Type *); \
void name##_RB_REMOVE_COLOR(struct name *, struct Type *, struct Type *);\
struct Type *name##_RB_REMOVE(struct name *, struct Type *); \
struct Type *name##_RB_INSERT(struct name *, struct Type *); \
struct Type *name##_RB_FIND(struct name *, struct keytype *); \
struct Type *name##_RB_NEXT(struct name *, struct Type *); \
struct Type *name##_RB_MINMAX(struct name *, int); \
\
/* Main rb operation.
* Moves node close to the key of elm to top
*/
#define RB_GENERATE(name, keytype, Type, field, cmp) \
void \
name##_RB_INSERT_COLOR(struct name *head, struct Type *elm) \
{ \
struct Type *parent, *gparent, *tmp; \
while ((parent = RB_PARENT_GET(Type, elm, field, head)) && \
RB_COLOR(parent, field) == RB_RED) { \
gparent = RB_PARENT_GET(Type, parent, field, head); \
if (parent == RB_LEFT_GET(Type, gparent, field, head)) { \
tmp = RB_RIGHT_GET(Type, gparent, field, head); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field);\
elm = gparent; \
continue; \
} \
if (RB_RIGHT_GET(Type, parent, field, head) == elm) { \
RB_ROTATE_LEFT(head, Type, parent, tmp, field);\
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_RIGHT(head, Type, gparent, tmp, field); \
}else { \
tmp = RB_LEFT_GET(Type, gparent, field, head); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field);\
elm = gparent; \
continue; \
} \
if (RB_LEFT_GET(Type, parent, field, head) == elm) { \
RB_ROTATE_RIGHT(head, Type, parent, tmp, field);\
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_LEFT(head, Type, gparent, tmp, field); \
} \
} \
tmp = RB_ROOT_GET(Type, head);\
if(tmp != NULL) \
RB_COLOR(tmp, field) = RB_BLACK; \
} \
void name##_RB_REMOVE_COLOR(struct name *head, struct Type *parent, struct Type *elm) \
{ \
struct Type *tmp, *root; \
while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
elm != RB_ROOT_GET(Type, head)) { \
if (RB_LEFT_GET(Type, parent, field, head) == elm) { \
tmp = RB_RIGHT_GET(Type, parent, field, head); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_LEFT(head, Type, parent, tmp, field);\
tmp = RB_RIGHT_GET(Type, parent, field, head); \
} \
if ((RB_LEFT_GET(Type, tmp, field, head) == NULL \
||RB_COLOR(RB_LEFT_GET(Type, tmp, field, head), field) == RB_BLACK) \
&& (RB_RIGHT_GET(Type, tmp, field, head) == NULL || \
RB_COLOR(RB_RIGHT_GET(Type, tmp, field, head), field) == RB_BLACK)) {\
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT_GET(Type, elm, field, head); \
} \
else { \
if (RB_RIGHT_GET(Type, tmp, field, head) == NULL || \
RB_COLOR(RB_RIGHT_GET(Type, tmp, field, head), field) == RB_BLACK) {\
struct Type *oleft; \
if ((oleft = RB_LEFT_GET(Type, tmp, field, head)))\
RB_COLOR(oleft, field) = RB_BLACK;\
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_RIGHT(head, Type, tmp, oleft, field);\
tmp = RB_RIGHT_GET(Type, parent, field, head); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_RIGHT_GET(Type, tmp, field, head)) \
RB_COLOR(RB_RIGHT_GET(Type, tmp, field, head), field) = RB_BLACK;\
RB_ROTATE_LEFT(head, Type, parent, tmp, field);\
elm = RB_ROOT_GET(Type, head); \
break; \
} \
} \
else { \
tmp = RB_LEFT_GET(Type, parent, field, head); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_RIGHT(head, Type, parent, tmp, field);\
tmp = RB_LEFT_GET(Type, parent, field, head); \
} \
if ((RB_LEFT_GET(Type, tmp, field, head) == NULL || \
RB_COLOR(RB_LEFT_GET(Type, tmp, field, head), field) == RB_BLACK) &&\
(RB_RIGHT_GET(Type, tmp, field, head) == NULL || \
RB_COLOR(RB_RIGHT_GET(Type, tmp, field, head), field) == RB_BLACK)) {\
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT_GET(Type, elm, field, head); \
}else { \
if (RB_LEFT_GET(Type, tmp, field, head) == NULL || \
RB_COLOR(RB_LEFT_GET(Type, tmp, field, head), field) == RB_BLACK) {\
struct Type *oright; \
if ((oright = RB_RIGHT_GET(Type, tmp, field, head)))\
RB_COLOR(oright, field) = RB_BLACK;\
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_LEFT(head, Type, tmp, oright, field);\
tmp = RB_LEFT_GET(Type, parent, field, head); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_LEFT_GET(Type, tmp, field, head)) \
RB_COLOR(RB_LEFT_GET(Type, tmp, field, head), field) = RB_BLACK;\
RB_ROTATE_RIGHT(head, Type, parent, tmp, field);\
elm = RB_ROOT_GET(Type, head); \
break; \
} \
} \
} \
if (elm) \
RB_COLOR(elm, field) = RB_BLACK; \
}\
struct Type * \
name##_RB_REMOVE(struct name *head, struct Type *elm) \
{ \
struct Type *child, *parent, *old = elm, *root; \
int color; \
if (RB_LEFT_GET(Type, elm, field, head) == NULL) \
child = RB_RIGHT_GET(Type, elm, field, head); \
else if (RB_RIGHT_GET(Type, elm, field, head) == NULL) \
child = RB_LEFT_GET(Type, elm, field, head); \
else { \
struct Type *left; \
elm = RB_RIGHT_GET(Type, elm, field, head); \
while ((left = RB_LEFT_GET(Type, elm, field, head))) \
elm = left; \
child = RB_RIGHT_GET(Type, elm, field, head); \
parent = RB_PARENT_GET(Type, elm, field, head); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT_SET(Type, child, field, head, parent); \
if (parent) { \
if (RB_LEFT_GET(Type, parent, field, head) == elm) \
RB_LEFT_SET(Type, parent, field, head, child); \
else \
RB_RIGHT_SET(Type, parent, field, head, child); \
RB_AUGMENT(Type, parent, field, head); \
} \
else \
{ \
RB_ROOT_SET(Type, head, child); \
} \
if (RB_PARENT_GET(Type, elm, field, head) == old) \
parent = elm; \
(elm)->field = (old)->field; \
if (RB_PARENT_GET(Type, old, field, head)) { \
if (RB_LEFT_GET(Type, RB_PARENT_GET(Type, old, field, head), field, head) == old)\
RB_LEFT_SET(Type, RB_PARENT_GET(Type, old, field, head), field, head, elm);\
else \
RB_RIGHT_SET(Type, RB_PARENT_GET(Type, old, field, head), field, head, elm);\
RB_AUGMENT(Type, RB_PARENT_GET(Type, old, field, head), field, head); \
} else \
RB_ROOT_SET(Type, head, elm); \
RB_PARENT_SET(Type, RB_LEFT_GET(Type, old, field, head), field, head, elm); \
if (RB_RIGHT_GET(Type, old, field, head)) \
RB_PARENT_SET(Type, RB_RIGHT_GET(Type, old, field, head), field, head, elm); \
if (parent) { \
left = parent; \
parent->field.rbe_size -= 1;\
do { \
RB_AUGMENT(Type, left, field, head); \
} while ((left = RB_PARENT_GET(Type, left, field, head))); \
} \
goto color; \
} \
parent = RB_PARENT_GET(Type, elm, field, head); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT_SET(Type, child, field, head, parent); \
if (parent) { \
parent->field.rbe_size -= 1;\
if (RB_LEFT_GET(Type, parent, field, head) == elm) \
RB_LEFT_SET(Type, parent, field, head, child); \
else \
RB_RIGHT_SET(Type, parent, field, head, child); \
RB_AUGMENT(Type, parent, field, head); \
} else \
RB_ROOT_SET(Type, head, child); \
color: \
if (color == RB_BLACK) \
name##_RB_REMOVE_COLOR(head, parent, child); \
return (old); \
} \
\
/* Inserts a node into the RB tree */ \
struct Type * \
name##_RB_INSERT(struct name *head, struct Type *elm) \
{ \
struct Type *tmp; \
struct Type *parent = NULL; \
int comp = 0; \
tmp = RB_ROOT_GET(Type, head); \
while (tmp) { \
parent = tmp; \
comp = (cmp)((struct keytype*)(elm), (struct keytype*)(parent)); \
if (comp < 0) \
tmp = RB_LEFT_GET(Type, tmp, field, head); \
else if (comp > 0) \
tmp = RB_RIGHT_GET(Type, tmp, field, head); \
else \
return (tmp); \
if (tmp) \
(parent)->field.rbe_size += 1; \
} \
RB_SET(Type, elm, parent, field, head); \
if (parent != NULL) { \
if (comp < 0) \
RB_LEFT_SET(Type, parent, field, head, elm); \
else \
RB_RIGHT_SET(Type, parent, field, head, elm); \
RB_AUGMENT(Type, parent, field, head); \
} else \
RB_ROOT_SET(Type, head, elm); \
name##_RB_INSERT_COLOR(head, elm); \
return (NULL); \
} \
\
/* Finds the node with the same key as elm */ \
struct Type * \
name##_RB_FIND(struct name *head, struct keytype *elm) \
{ \
struct Type *tmp = RB_ROOT_GET(Type, head); \
int comp; \
while (tmp) { \
comp = cmp(elm, (struct keytype*)(tmp)); \
if (comp < 0) \
tmp = RB_LEFT_GET(Type, tmp, field, head); \
else if (comp > 0) \
tmp = RB_RIGHT_GET(Type, tmp, field, head); \
else \
return (tmp); \
} \
return (NULL); \
} \
\
struct Type * \
name##_RB_NEXT(struct name* head, struct Type *elm) \
{ \
if (RB_RIGHT_GET(Type, elm, field, head)) { \
elm = RB_RIGHT_GET(Type, elm, field, head); \
while (RB_LEFT_GET(Type, elm, field, head)) \
elm = RB_LEFT_GET(Type, elm, field, head); \
} else { \
if (RB_PARENT_GET(Type, elm, field, head) && \
(elm == RB_LEFT_GET(Type, RB_PARENT_GET(Type, elm, field, head), field, head))) \
elm = RB_PARENT_GET(Type, elm, field, head); \
else { \
while (RB_PARENT_GET(Type, elm, field, head) && \
(elm == RB_RIGHT_GET(Type, RB_PARENT_GET(Type, elm, field, head), field, head)))\
elm = RB_PARENT_GET(Type, elm, field, head); \
elm = RB_PARENT_GET(Type, elm, field, head); \
} \
} \
return (elm); \
} \
\
struct Type * \
name##_RB_MINMAX(struct name *head, int val) \
{ \
struct Type *tmp = RB_ROOT_GET(Type, head); \
struct Type *parent = NULL; \
while (tmp) { \
parent = tmp; \
if (val < 0) \
tmp = RB_LEFT_GET(Type, tmp, field, head); \
else \
tmp = RB_RIGHT_GET(Type, tmp, field, head); \
} \
return (parent); \
}
#define RB_NEGINF -1
#define RB_INF 1
#define RB_INSERT(name, head, elm) name##_RB_INSERT(head, elm)
#define RB_REMOVE(name, head, elm) name##_RB_REMOVE(head, elm)
#define RB_FIND(name, head, key) name##_RB_FIND(head, key)
#define RB_NEXT(name, head, elm) name##_RB_NEXT(head, elm)
#define RB_MIN(name, head) name##_RB_MINMAX(head, RB_NEGINF)
#define RB_MAX(name, head) name##_RB_MINMAX(head, RB_INF)
#define RB_FOREACH(x, name, head) \
for ((x) = RB_MIN(name, head); \
(x) != NULL; \
(x) = name##_RB_NEXT(head, x))
#endif /* _SYS_TREE_H_ */
使用起来还是很方便:
// main.cpp
#include <iostream>
#include <chrono>
#if defined(_WIN64)
typedef __int64 INT_PTR, * PINT_PTR;
typedef unsigned __int64 UINT_PTR, * PUINT_PTR;
typedef __int64 LONG_PTR, * PLONG_PTR;
typedef unsigned __int64 ULONG_PTR, * PULONG_PTR;
#define __int3264 __int64
#else
typedef _W64 int INT_PTR, * PINT_PTR;
typedef _W64 unsigned int UINT_PTR, * PUINT_PTR;
typedef _W64 long LONG_PTR, * PLONG_PTR;
typedef _W64 unsigned long ULONG_PTR, * PULONG_PTR;
#define __int3264 __int32
#endif
#include "tree.h"
struct RBTreeKey
{
int key;
};
struct RBTreeNode
{
RBTreeKey id;
char value;
RB_ENTRY(RBTreeNode) entry;
};
int RBTreeCmp(RBTreeKey* a, RBTreeKey* b)
{
if (a->key < b->key) return -1;
if (a->key > b->key) return 1;
return 0;
}
RB_HEAD(MyTree, RBTreeKey, RBTreeNode);
RB_PROTOTYPE(MyTree, RBTreeKey, RBTreeNode, entry, RBTreeCmp);
RB_GENERATE(MyTree, RBTreeKey, RBTreeNode, entry, RBTreeCmp);
void MyTree_Range_Query(struct MyTree* tree, int min_key, int max_key, RBTreeNode* parent=NULL)
{
if (RB_EMPTY(RBTreeNode, tree) || min_key > max_key)
return;
// 手动栈实现(避免递归深度限制)
struct RBTreeNode* stack[64]; // 红黑树高度最多 2*log2(n),64足够大
int stack_size = 0;
struct RBTreeNode* current = parent == NULL ? RB_ROOT_GET(RBTreeNode,tree) : parent;
int count = 0;
// 中序遍历的迭代版本
while (current != NULL || stack_size > 0) {
// 遍历到最左节点
while (current != NULL) {
stack[stack_size++] = current;
// 优化:如果当前节点已经小于min_key,可以跳过左子树的部分遍历
if (current->id.key < min_key) {
// 左子树的所有节点都会更小,直接跳过
current = NULL;
}
else {
current = RB_LEFT_GET(RBTreeNode,current, entry, tree);
}
}
if (stack_size > 0) {
current = stack[--stack_size];
// 检查当前节点是否在范围内
if (current->id.key >= min_key) {
if (current->id.key <= max_key) {
// 在范围内,处理节点
std::cout << "Key: " << current->id.key << ", Value:" << current->value << std::endl;
count++;
}
else {
// 超过max_key,可以提前终止
break;
}
}
// 决定是否继续遍历右子树
if (current->id.key < max_key) {
current = RB_RIGHT_GET(RBTreeNode,current, entry,tree);
}
else {
current = NULL; // 右子树的所有节点都会更大,跳过
}
}
}
std::cout << "Find node: count= " << count << std::endl;
}
int main()
{
std::cout << "Hello RbTree!\n";
char buffer[1024] = { 0 };
struct MyTree* tree = (struct MyTree*)(buffer);
RB_INIT(MyTree, RBTreeNode, buffer, tree);
const int dataOffset = sizeof(MyTree);// offset must >= 1, to help internal condition check.
RBTreeNode* n1 = new(buffer + dataOffset)RBTreeNode();
RBTreeNode* n2 = new(buffer + dataOffset + 1 * sizeof(RBTreeNode))RBTreeNode();
RBTreeNode* n3 = new(buffer + dataOffset + 2 * sizeof(RBTreeNode))RBTreeNode();
RBTreeNode* n4 = new(buffer + dataOffset + 3 * sizeof(RBTreeNode))RBTreeNode();
RBTreeNode* n5 = new(buffer + dataOffset + 4 * sizeof(RBTreeNode))RBTreeNode();
RBTreeNode* n6 = new(buffer + dataOffset + 5 * sizeof(RBTreeNode))RBTreeNode();
n1->id.key = 10, n2->id.key = 5, n3->id.key = 15, n4->id.key = 1, n5->id.key = 13, n6->id.key = 25;
n1->value = 1, n2->value = 2, n3->value = 3, n4->value = 4, n5->value = 5, n6->value = 6;
RB_INSERT(MyTree, tree, n1);
RB_INSERT(MyTree, tree, n2);
RB_INSERT(MyTree, tree, n3);
RB_INSERT(MyTree, tree, n4);
RB_INSERT(MyTree, tree, n5);
RB_INSERT(MyTree, tree, n6);
RBTreeKey find = { 5 };
int dataLen = dataOffset + 6 * sizeof(RBTreeNode);
// save data to disk
FILE *fp;
fopen_s(&fp, "./tree.bin", "wb");
fwrite(buffer,1, dataLen, fp);
fclose(fp);
//load data from disk
fopen_s(&fp, "./tree.bin", "rb");
char rbuf[1024] = { 0 };
fread(rbuf,1, dataLen,fp);
struct MyTree* dataTree = (struct MyTree*)(rbuf);
fclose(fp);
//single query data
RBTreeKey find = { 5 };
RBTreeNode* found = RB_FIND(MyTree, dataTree, &find);
//range query data
MyTree_Range_Query(dataTree, 0, 30);
//traverse data
RBTreeNode* node = nullptr;
RB_FOREACH(node, MyTree, dataTree)
{
std::cout << "Node Key: " << node->id.key << std::endl;
}
// remove data
RB_REMOVE(MyTree, dataTree, found);
RB_FOREACH(node, MyTree, dataTree)
{
std::cout << "Node Key: " << node->id.key << std::endl;
}
std::cout << "Hello World!\n";
return 0;
}