数据结构——红黑树

在一些限制条件下,没有办法使用stl的容器,只能手搓。万幸的是很多成熟的开源库已经提供了许多好用的轮子,方便的同时也十分可靠(毕竟已经过实践检验)。比如libevent源码中有一组关于树的宏定义,可帮助我们快速实现一棵红黑树。它的源码如下:

cpp 复制代码
/*	$OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $	*/
/*
 * Copyright 2002 Niels Provos <provos@citi.umich.edu>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef	_SYS_TREE_H_
#define	_SYS_TREE_H_

 /*
  * This file defines data structures for different types of trees:
  * splay trees and red-black trees.
  *
  * A splay tree is a self-organizing data structure.  Every operation
  * on the tree causes a splay to happen.  The splay moves the requested
  * node to the root of the tree and partly rebalances it.
  *
  * This has the benefit that request locality causes faster lookups as
  * the requested nodes move to the top of the tree.  On the other hand,
  * every lookup causes memory writes.
  *
  * The Balance Theorem bounds the total access time for m operations
  * and n inserts on an initially empty tree as O((m + n)lg n).  The
  * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
  *
  * A red-black tree is a binary search tree with the node color as an
  * extra attribute.  It fulfills a set of conditions:
  *	- every search path from the root to a leaf consists of the
  *	  same number of black nodes,
  *	- each red node (except for the root) has a black parent,
  *	- each leaf node is black.
  *
  * Every operation on a red-black tree is bounded as O(lg n).
  * The maximum height of a red-black tree is 2lg (n+1).
  */

#define SPLAY_HEAD(name, type)						\
struct name {								\
	struct type *sph_root; /* root of the tree */			\
}

#define SPLAY_INITIALIZER(root)						\
	{ NULL }

#define SPLAY_INIT(root) do {						\
	(root)->sph_root = NULL;					\
} while (0)

#define SPLAY_ENTRY(type)						\
struct {								\
	struct type *spe_left; /* left element */			\
	struct type *spe_right; /* right element */			\
}

#define SPLAY_LEFT(elm, field)		(elm)->field.spe_left
#define SPLAY_RIGHT(elm, field)		(elm)->field.spe_right
#define SPLAY_ROOT(head)		(head)->sph_root
#define SPLAY_EMPTY(head)		(SPLAY_ROOT(head) == NULL)

  /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
#define SPLAY_ROTATE_RIGHT(head, tmp, field) do {			\
	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field);	\
	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
	(head)->sph_root = tmp;						\
} while (0)

#define SPLAY_ROTATE_LEFT(head, tmp, field) do {			\
	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field);	\
	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
	(head)->sph_root = tmp;						\
} while (0)

#define SPLAY_LINKLEFT(head, tmp, field) do {				\
	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
	tmp = (head)->sph_root;						\
	(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);		\
} while (0)

#define SPLAY_LINKRIGHT(head, tmp, field) do {				\
	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
	tmp = (head)->sph_root;						\
	(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);	\
} while (0)

#define SPLAY_ASSEMBLE(head, node, left, right, field) do {		\
	SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field);	\
	SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field);	\
	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field);	\
} while (0)

/* Generates prototypes and inline functions */

#define SPLAY_PROTOTYPE(name, type, field, cmp)				\
void name##_SPLAY(struct name *, struct type *);			\
void name##_SPLAY_MINMAX(struct name *, int);				\
struct type *name##_SPLAY_INSERT(struct name *, struct type *);		\
struct type *name##_SPLAY_REMOVE(struct name *, struct type *);		\
									\
/* Finds the node with the same key as elm */				\
static __inline struct type *						\
name##_SPLAY_FIND(struct name *head, struct type *elm)			\
{									\
	if (SPLAY_EMPTY(head))						\
		return(NULL);						\
	name##_SPLAY(head, elm);					\
	if ((cmp)(elm, (head)->sph_root) == 0)				\
		return (head->sph_root);				\
	return (NULL);							\
}									\
									\
static __inline struct type *						\
name##_SPLAY_NEXT(struct name *head, struct type *elm)			\
{									\
	name##_SPLAY(head, elm);					\
	if (SPLAY_RIGHT(elm, field) != NULL) {				\
		elm = SPLAY_RIGHT(elm, field);				\
		while (SPLAY_LEFT(elm, field) != NULL) {		\
			elm = SPLAY_LEFT(elm, field);			\
		}							\
	} else								\
		elm = NULL;						\
	return (elm);							\
}									\
									\
static __inline struct type *						\
name##_SPLAY_MIN_MAX(struct name *head, int val)			\
{									\
	name##_SPLAY_MINMAX(head, val);					\
	return (SPLAY_ROOT(head));					\
}

/* Main splay operation.
 * Moves node close to the key of elm to top
 */
#define SPLAY_GENERATE(name, type, field, cmp)				\
struct type *								\
name##_SPLAY_INSERT(struct name *head, struct type *elm)		\
{									\
    if (SPLAY_EMPTY(head)) {						\
	    SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL;	\
    } else {								\
	    int __comp;							\
	    name##_SPLAY(head, elm);					\
	    __comp = (cmp)(elm, (head)->sph_root);			\
	    if(__comp < 0) {						\
		    SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
		    SPLAY_RIGHT(elm, field) = (head)->sph_root;		\
		    SPLAY_LEFT((head)->sph_root, field) = NULL;		\
	    } else if (__comp > 0) {					\
		    SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
		    SPLAY_LEFT(elm, field) = (head)->sph_root;		\
		    SPLAY_RIGHT((head)->sph_root, field) = NULL;	\
	    } else							\
		    return ((head)->sph_root);				\
    }									\
    (head)->sph_root = (elm);						\
    return (NULL);							\
}									\
									\
struct type *								\
name##_SPLAY_REMOVE(struct name *head, struct type *elm)		\
{									\
	struct type *__tmp;						\
	if (SPLAY_EMPTY(head))						\
		return (NULL);						\
	name##_SPLAY(head, elm);					\
	if ((cmp)(elm, (head)->sph_root) == 0) {			\
		if (SPLAY_LEFT((head)->sph_root, field) == NULL) {	\
			(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
		} else {						\
			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
			(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
			name##_SPLAY(head, elm);			\
			SPLAY_RIGHT((head)->sph_root, field) = __tmp;	\
		}							\
		return (elm);						\
	}								\
	return (NULL);							\
}									\
									\
void									\
name##_SPLAY(struct name *head, struct type *elm)			\
{									\
	struct type __node, *__left, *__right, *__tmp;			\
	int __comp;							\
\
	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
	__left = __right = &__node;					\
\
	while ((__comp = (cmp)(elm, (head)->sph_root))) {		\
		if (__comp < 0) {					\
			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
			if (__tmp == NULL)				\
				break;					\
			if ((cmp)(elm, __tmp) < 0){			\
				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
					break;				\
			}						\
			SPLAY_LINKLEFT(head, __right, field);		\
		} else if (__comp > 0) {				\
			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
			if (__tmp == NULL)				\
				break;					\
			if ((cmp)(elm, __tmp) > 0){			\
				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
					break;				\
			}						\
			SPLAY_LINKRIGHT(head, __left, field);		\
		}							\
	}								\
	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
}									\
									\
/* Splay with either the minimum or the maximum element			\
 * Used to find minimum or maximum element in tree.			\
 */									\
void name##_SPLAY_MINMAX(struct name *head, int __comp) \
{									\
	struct type __node, *__left, *__right, *__tmp;			\
\
	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
	__left = __right = &__node;					\
\
	while (1) {							\
		if (__comp < 0) {					\
			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
			if (__tmp == NULL)				\
				break;					\
			if (__comp < 0){				\
				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
					break;				\
			}						\
			SPLAY_LINKLEFT(head, __right, field);		\
		} else if (__comp > 0) {				\
			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
			if (__tmp == NULL)				\
				break;					\
			if (__comp > 0) {				\
				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
					break;				\
			}						\
			SPLAY_LINKRIGHT(head, __left, field);		\
		}							\
	}								\
	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
}

#define SPLAY_NEGINF	-1
#define SPLAY_INF	1

#define SPLAY_INSERT(name, x, y)	name##_SPLAY_INSERT(x, y)
#define SPLAY_REMOVE(name, x, y)	name##_SPLAY_REMOVE(x, y)
#define SPLAY_FIND(name, x, y)		name##_SPLAY_FIND(x, y)
#define SPLAY_NEXT(name, x, y)		name##_SPLAY_NEXT(x, y)
#define SPLAY_MIN(name, x)		(SPLAY_EMPTY(x) ? NULL	\
					: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
#define SPLAY_MAX(name, x)		(SPLAY_EMPTY(x) ? NULL	\
					: name##_SPLAY_MIN_MAX(x, SPLAY_INF))

#define SPLAY_FOREACH(x, name, head)					\
	for ((x) = SPLAY_MIN(name, head);				\
	     (x) != NULL;						\
	     (x) = SPLAY_NEXT(name, head, x))

 /* Macros that define a red-back tree */
#define RB_HEAD(name,keytype, type)						\
struct name {								\
	struct type *rbh_root; /* root of the tree */			\
}

#define RB_INITIALIZER(root)						\
	{ NULL }

#define RB_INIT(root) do {						\
	(root)->rbh_root = NULL;					\
} while (0)

#define RB_BLACK	0
#define RB_RED		1
#define RB_ENTRY(type)							\
struct {								\
	struct type *rbe_left;		/* left element */		\
	struct type *rbe_right;		/* right element */		\
	struct type *rbe_parent;	/* parent element */		\
	int rbe_color;			/* node color */		\
}

#define RB_LEFT(elm, field)		(elm)->field.rbe_left
#define RB_RIGHT(elm, field)		(elm)->field.rbe_right
#define RB_PARENT(elm, field)		(elm)->field.rbe_parent
#define RB_COLOR(elm, field)		(elm)->field.rbe_color
#define RB_ROOT(head)			(head)->rbh_root
#define RB_EMPTY(head)			(RB_ROOT(head) == NULL)

#define RB_SET(elm, parent, field) do {					\
	RB_PARENT(elm, field) = parent;					\
	RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL;		\
	RB_COLOR(elm, field) = RB_RED;					\
} while (0)

#define RB_SET_BLACKRED(black, red, field) do {				\
	RB_COLOR(black, field) = RB_BLACK;				\
	RB_COLOR(red, field) = RB_RED;					\
} while (0)

#ifndef RB_AUGMENT
#define RB_AUGMENT(x)
#endif

#define RB_ROTATE_LEFT(head, elm, tmp, field) do {			\
	(tmp) = RB_RIGHT(elm, field);					\
	if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field))) {		\
		RB_PARENT(RB_LEFT(tmp, field), field) = (elm);		\
	}								\
	RB_AUGMENT(elm);						\
	if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) {		\
		if ((elm) == RB_LEFT(RB_PARENT(elm, field), field))	\
			RB_LEFT(RB_PARENT(elm, field), field) = (tmp);	\
		else							\
			RB_RIGHT(RB_PARENT(elm, field), field) = (tmp);	\
	} else								\
		(head)->rbh_root = (tmp);				\
	RB_LEFT(tmp, field) = (elm);					\
	RB_PARENT(elm, field) = (tmp);					\
	RB_AUGMENT(tmp);						\
	if ((RB_PARENT(tmp, field)))					\
		RB_AUGMENT(RB_PARENT(tmp, field));			\
} while (0)

#define RB_ROTATE_RIGHT(head, elm, tmp, field) do {			\
	(tmp) = RB_LEFT(elm, field);					\
	if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field))) {		\
		RB_PARENT(RB_RIGHT(tmp, field), field) = (elm);		\
	}								\
	RB_AUGMENT(elm);						\
	if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) {		\
		if ((elm) == RB_LEFT(RB_PARENT(elm, field), field))	\
			RB_LEFT(RB_PARENT(elm, field), field) = (tmp);	\
		else							\
			RB_RIGHT(RB_PARENT(elm, field), field) = (tmp);	\
	} else								\
		(head)->rbh_root = (tmp);				\
	RB_RIGHT(tmp, field) = (elm);					\
	RB_PARENT(elm, field) = (tmp);					\
	RB_AUGMENT(tmp);						\
	if ((RB_PARENT(tmp, field)))					\
		RB_AUGMENT(RB_PARENT(tmp, field));			\
} while (0)

/* Generates prototypes and inline functions */
#define RB_PROTOTYPE(name, keytype, type, field, cmp)				\
void name##_RB_INSERT_COLOR(struct name *, struct type *);	\
void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
struct type *name##_RB_REMOVE(struct name *, struct type *);		\
struct type *name##_RB_INSERT(struct name *, struct type *);		\
struct type *name##_RB_FIND(struct name *, struct keytype *);		\
struct type *name##_RB_NEXT(struct type *);				\
struct type *name##_RB_MINMAX(struct name *, int);			\
									\

/* Main rb operation.
 * Moves node close to the key of elm to top
 */
#define RB_GENERATE(name, keytype, type, field, cmp)				\
void									\
name##_RB_INSERT_COLOR(struct name *head, struct type *elm)		\
{									\
	struct type *parent, *gparent, *tmp;				\
	while ((parent = RB_PARENT(elm, field)) &&			\
	    RB_COLOR(parent, field) == RB_RED) {			\
		gparent = RB_PARENT(parent, field);			\
		if (parent == RB_LEFT(gparent, field)) {		\
			tmp = RB_RIGHT(gparent, field);			\
			if (tmp && RB_COLOR(tmp, field) == RB_RED) {	\
				RB_COLOR(tmp, field) = RB_BLACK;	\
				RB_SET_BLACKRED(parent, gparent, field);\
				elm = gparent;				\
				continue;				\
			}						\
			if (RB_RIGHT(parent, field) == elm) {		\
				RB_ROTATE_LEFT(head, parent, tmp, field);\
				tmp = parent;				\
				parent = elm;				\
				elm = tmp;				\
			}						\
			RB_SET_BLACKRED(parent, gparent, field);	\
			RB_ROTATE_RIGHT(head, gparent, tmp, field);	\
		} else {						\
			tmp = RB_LEFT(gparent, field);			\
			if (tmp && RB_COLOR(tmp, field) == RB_RED) {	\
				RB_COLOR(tmp, field) = RB_BLACK;	\
				RB_SET_BLACKRED(parent, gparent, field);\
				elm = gparent;				\
				continue;				\
			}						\
			if (RB_LEFT(parent, field) == elm) {		\
				RB_ROTATE_RIGHT(head, parent, tmp, field);\
				tmp = parent;				\
				parent = elm;				\
				elm = tmp;				\
			}						\
			RB_SET_BLACKRED(parent, gparent, field);	\
			RB_ROTATE_LEFT(head, gparent, tmp, field);	\
		}							\
	}								\
	RB_COLOR(head->rbh_root, field) = RB_BLACK;			\
}									\
									\
void									\
name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
{									\
	struct type *tmp;						\
	while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) &&	\
	    elm != RB_ROOT(head)) {					\
		if (RB_LEFT(parent, field) == elm) {			\
			tmp = RB_RIGHT(parent, field);			\
			if (RB_COLOR(tmp, field) == RB_RED) {		\
				RB_SET_BLACKRED(tmp, parent, field);	\
				RB_ROTATE_LEFT(head, parent, tmp, field);\
				tmp = RB_RIGHT(parent, field);		\
			}						\
			if ((RB_LEFT(tmp, field) == NULL ||		\
			    RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
			    (RB_RIGHT(tmp, field) == NULL ||		\
			    RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
				RB_COLOR(tmp, field) = RB_RED;		\
				elm = parent;				\
				parent = RB_PARENT(elm, field);		\
			} else {					\
				if (RB_RIGHT(tmp, field) == NULL ||	\
				    RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
					struct type *oleft;		\
					if ((oleft = RB_LEFT(tmp, field)))\
						RB_COLOR(oleft, field) = RB_BLACK;\
					RB_COLOR(tmp, field) = RB_RED;	\
					RB_ROTATE_RIGHT(head, tmp, oleft, field);\
					tmp = RB_RIGHT(parent, field);	\
				}					\
				RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
				RB_COLOR(parent, field) = RB_BLACK;	\
				if (RB_RIGHT(tmp, field))		\
					RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
				RB_ROTATE_LEFT(head, parent, tmp, field);\
				elm = RB_ROOT(head);			\
				break;					\
			}						\
		} else {						\
			tmp = RB_LEFT(parent, field);			\
			if (RB_COLOR(tmp, field) == RB_RED) {		\
				RB_SET_BLACKRED(tmp, parent, field);	\
				RB_ROTATE_RIGHT(head, parent, tmp, field);\
				tmp = RB_LEFT(parent, field);		\
			}						\
			if ((RB_LEFT(tmp, field) == NULL ||		\
			    RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
			    (RB_RIGHT(tmp, field) == NULL ||		\
			    RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
				RB_COLOR(tmp, field) = RB_RED;		\
				elm = parent;				\
				parent = RB_PARENT(elm, field);		\
			} else {					\
				if (RB_LEFT(tmp, field) == NULL ||	\
				    RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
					struct type *oright;		\
					if ((oright = RB_RIGHT(tmp, field)))\
						RB_COLOR(oright, field) = RB_BLACK;\
					RB_COLOR(tmp, field) = RB_RED;	\
					RB_ROTATE_LEFT(head, tmp, oright, field);\
					tmp = RB_LEFT(parent, field);	\
				}					\
				RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
				RB_COLOR(parent, field) = RB_BLACK;	\
				if (RB_LEFT(tmp, field))		\
					RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
				RB_ROTATE_RIGHT(head, parent, tmp, field);\
				elm = RB_ROOT(head);			\
				break;					\
			}						\
		}							\
	}								\
	if (elm)							\
		RB_COLOR(elm, field) = RB_BLACK;			\
}									\
									\
struct type *								\
name##_RB_REMOVE(struct name *head, struct type *elm)			\
{									\
	struct type *child, *parent, *old = elm;			\
	int color;							\
	if (RB_LEFT(elm, field) == NULL)				\
		child = RB_RIGHT(elm, field);				\
	else if (RB_RIGHT(elm, field) == NULL)				\
		child = RB_LEFT(elm, field);				\
	else {								\
		struct type *left;					\
		elm = RB_RIGHT(elm, field);				\
		while ((left = RB_LEFT(elm, field)))			\
			elm = left;					\
		child = RB_RIGHT(elm, field);				\
		parent = RB_PARENT(elm, field);				\
		color = RB_COLOR(elm, field);				\
		if (child)						\
			RB_PARENT(child, field) = parent;		\
		if (parent) {						\
			if (RB_LEFT(parent, field) == elm)		\
				RB_LEFT(parent, field) = child;		\
			else						\
				RB_RIGHT(parent, field) = child;	\
			RB_AUGMENT(parent);				\
		} else							\
			RB_ROOT(head) = child;				\
		if (RB_PARENT(elm, field) == old)			\
			parent = elm;					\
		(elm)->field = (old)->field;				\
		if (RB_PARENT(old, field)) {				\
			if (RB_LEFT(RB_PARENT(old, field), field) == old)\
				RB_LEFT(RB_PARENT(old, field), field) = elm;\
			else						\
				RB_RIGHT(RB_PARENT(old, field), field) = elm;\
			RB_AUGMENT(RB_PARENT(old, field));		\
		} else							\
			RB_ROOT(head) = elm;				\
		RB_PARENT(RB_LEFT(old, field), field) = elm;		\
		if (RB_RIGHT(old, field))				\
			RB_PARENT(RB_RIGHT(old, field), field) = elm;	\
		if (parent) {						\
			left = parent;					\
			do {						\
				RB_AUGMENT(left);			\
			} while ((left = RB_PARENT(left, field)));	\
		}							\
		goto color;						\
	}								\
	parent = RB_PARENT(elm, field);					\
	color = RB_COLOR(elm, field);					\
	if (child)							\
		RB_PARENT(child, field) = parent;			\
	if (parent) {							\
		if (RB_LEFT(parent, field) == elm)			\
			RB_LEFT(parent, field) = child;			\
		else							\
			RB_RIGHT(parent, field) = child;		\
		RB_AUGMENT(parent);					\
	} else								\
		RB_ROOT(head) = child;					\
color:									\
	if (color == RB_BLACK)						\
		name##_RB_REMOVE_COLOR(head, parent, child);		\
	return (old);							\
}									\
									\
/* Inserts a node into the RB tree */					\
struct type *								\
name##_RB_INSERT(struct name *head, struct type *elm)			\
{									\
	struct type *tmp;						\
	struct type *parent = NULL;					\
	int comp = 0;							\
	tmp = RB_ROOT(head);						\
	while (tmp) {							\
		parent = tmp;						\
		comp = (cmp)((struct keytype*)(elm), (struct keytype*)(parent));				\
		if (comp < 0)						\
			tmp = RB_LEFT(tmp, field);			\
		else if (comp > 0)					\
			tmp = RB_RIGHT(tmp, field);			\
		else							\
			return (tmp);					\
	}								\
	RB_SET(elm, parent, field);					\
	if (parent != NULL) {						\
		if (comp < 0)						\
			RB_LEFT(parent, field) = elm;			\
		else							\
			RB_RIGHT(parent, field) = elm;			\
		RB_AUGMENT(parent);					\
	} else								\
		RB_ROOT(head) = elm;					\
	name##_RB_INSERT_COLOR(head, elm);				\
	return (NULL);							\
}									\
									\
/* Finds the node with the same key as elm */				\
struct type *								\
name##_RB_FIND(struct name *head, struct keytype *elm)			\
{									\
	struct type *tmp = RB_ROOT(head);				\
	int comp;							\
	while (tmp) {							\
		comp = cmp(elm, (struct keytype*)(tmp));					\
		if (comp < 0)						\
			tmp = RB_LEFT(tmp, field);			\
		else if (comp > 0)					\
			tmp = RB_RIGHT(tmp, field);			\
		else							\
			return (tmp);					\
	}								\
	return (NULL);							\
}									\
									\
struct type *								\
name##_RB_NEXT(struct type *elm)					\
{									\
	if (RB_RIGHT(elm, field)) {					\
		elm = RB_RIGHT(elm, field);				\
		while (RB_LEFT(elm, field))				\
			elm = RB_LEFT(elm, field);			\
	} else {							\
		if (RB_PARENT(elm, field) &&				\
		    (elm == RB_LEFT(RB_PARENT(elm, field), field)))	\
			elm = RB_PARENT(elm, field);			\
		else {							\
			while (RB_PARENT(elm, field) &&			\
			    (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
				elm = RB_PARENT(elm, field);		\
			elm = RB_PARENT(elm, field);			\
		}							\
	}								\
	return (elm);							\
}									\
									\
struct type *								\
name##_RB_MINMAX(struct name *head, int val)				\
{									\
	struct type *tmp = RB_ROOT(head);				\
	struct type *parent = NULL;					\
	while (tmp) {							\
		parent = tmp;						\
		if (val < 0)						\
			tmp = RB_LEFT(tmp, field);			\
		else							\
			tmp = RB_RIGHT(tmp, field);			\
	}								\
	return (parent);						\
}

#define RB_NEGINF	-1
#define RB_INF	1

#define RB_INSERT(name, x, y)	name##_RB_INSERT(x, y)
#define RB_REMOVE(name, x, y)	name##_RB_REMOVE(x, y)
#define RB_FIND(name, x, y)	name##_RB_FIND(x, y)
#define RB_NEXT(name, x, y)	name##_RB_NEXT(y)
#define RB_MIN(name, x)		name##_RB_MINMAX(x, RB_NEGINF)
#define RB_MAX(name, x)		name##_RB_MINMAX(x, RB_INF)

#define RB_FOREACH(x, name, head)					\
	for ((x) = RB_MIN(name, head);					\
	     (x) != NULL;						\
	     (x) = name##_RB_NEXT(x))

#endif	/* _SYS_TREE_H_ */

使用起来也十分方便,比如下面的小例子:

cpp 复制代码
// main.cpp
#include <iostream>
#include <chrono>
#include "tree.h"


struct RBTreeKey
{
    int key;
};

struct RBTreeNode
{
    RBTreeKey id;
    char value;
    RB_ENTRY(RBTreeNode) entry;
};

int RBTreeCmp(RBTreeKey*a, RBTreeKey*b)
{
    if (a->key < b->key) return -1;
    if (a->key > b->key) return 1;
    return 0;
}

RB_HEAD(MyTree, RBTreeKey, RBTreeNode);
RB_PROTOTYPE(MyTree, RBTreeKey, RBTreeNode, entry, RBTreeCmp);
RB_GENERATE(MyTree, RBTreeKey, RBTreeNode, entry, RBTreeCmp);

int main()
{
    std::cout << "Hello RbTree!\n";
    struct MyTree head = RB_INITIALIZER(&head);
    RBTreeNode n1,n2,n3;
    n1.id.key = 10,n2.id.key=5,n3.id.key=15;
    n1.value = 1, n2.value = 2, n3.value = 3;
    RB_INSERT(MyTree,&head,&n1);//增
    RB_INSERT(MyTree, &head, &n2);
    RB_INSERT(MyTree, &head, &n3);
    RBTreeKey find = {5};
    
    RBTreeNode* found = RB_FIND(MyTree,&head,&find);//查
    RBTreeNode* node = nullptr;
    RB_FOREACH(node, MyTree, &head)//遍历
    {
        std::cout << "Node Key: " << node->id.key << std::endl;
    }
    RB_REMOVE(MyTree,&head,found);//删除
    RB_FOREACH(node, MyTree, &head)
    {
        std::cout << "Node Key: " << node->id.key << std::endl;
    }
    std::cout << "Hello World!\n";
    return 0;
}

为了可以支持整棵红黑树的网络传播,存盘,进程共享,需要对树结构中的指针进行归一化,即指针统一用偏移量表示,叠加基地址访问。对上述红黑树相关的宏进行修改如下:

复制代码
/*	$OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $	*/
/*
* Copyright 2002 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#ifndef	_SYS_TREE_H_
#define	_SYS_TREE_H_

/*
* This file defines data structures for different types of trees:
* splay trees and red-black trees.
*
* A splay tree is a self-organizing data structure.  Every operation
* on the tree causes a splay to happen.  The splay moves the requested
* node to the root of the tree and partly rebalances it.
*
* This has the benefit that request locality causes faster lookups as
* the requested nodes move to the top of the tree.  On the other hand,
* every lookup causes memory writes.
*
* The Balance Theorem bounds the total access time for m operations
* and n inserts on an initially empty tree as O((m + n)lg n).  The
* amortized cost for a sequence of m accesses to a splay tree is O(lg n);
*
* A red-black tree is a binary search tree with the node color as an
* extra attribute.  It fulfills a set of conditions:
*	- every search path from the root to a leaf consists of the
*	  same number of black nodes,
*	- each red node (except for the root) has a black parent,
*	- each leaf node is black.
*
* Every operation on a red-black tree is bounded as O(lg n).
* The maximum height of a red-black tree is 2lg (n+1).
*/

#define SPLAY_HEAD(name, type)						\
struct name {								\
	struct type *sph_root; /* root of the tree */			\
}

#define SPLAY_INITIALIZER(root)						\
	{ NULL }

#define SPLAY_INIT(root) do {						\
	(root)->sph_root = NULL;					\
} while (0)

#define SPLAY_ENTRY(type)						\
struct {								\
	struct type *spe_left; /* left element */			\
	struct type *spe_right; /* right element */			\
}

#define SPLAY_LEFT(elm, field)		(elm)->field.spe_left
#define SPLAY_RIGHT(elm, field)		(elm)->field.spe_right
#define SPLAY_ROOT(head)		(head)->sph_root
#define SPLAY_EMPTY(head)		(SPLAY_ROOT(head) == NULL)

/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
#define SPLAY_ROTATE_RIGHT(head, tmp, field) do {			\
	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field);	\
	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
	(head)->sph_root = tmp;						\
} while (0)

#define SPLAY_ROTATE_LEFT(head, tmp, field) do {			\
	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field);	\
	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
	(head)->sph_root = tmp;						\
} while (0)

#define SPLAY_LINKLEFT(head, tmp, field) do {				\
	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
	tmp = (head)->sph_root;						\
	(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);		\
} while (0)

#define SPLAY_LINKRIGHT(head, tmp, field) do {				\
	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
	tmp = (head)->sph_root;						\
	(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);	\
} while (0)

#define SPLAY_ASSEMBLE(head, node, left, right, field) do {		\
	SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field);	\
	SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field);	\
	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field);	\
} while (0)

/* Generates prototypes and inline functions */

#define SPLAY_PROTOTYPE(name, type, field, cmp)				\
void name##_SPLAY(struct name *, struct type *);			\
void name##_SPLAY_MINMAX(struct name *, int);				\
struct type *name##_SPLAY_INSERT(struct name *, struct type *);		\
struct type *name##_SPLAY_REMOVE(struct name *, struct type *);		\
									\
/* Finds the node with the same key as elm */				\
static __inline struct type *						\
name##_SPLAY_FIND(struct name *head, struct type *elm)			\
{									\
	if (SPLAY_EMPTY(head))						\
		return(NULL);						\
	name##_SPLAY(head, elm);					\
	if ((cmp)(elm, (head)->sph_root) == 0)				\
		return (head->sph_root);				\
	return (NULL);							\
}									\
									\
static __inline struct type *						\
name##_SPLAY_NEXT(struct name *head, struct type *elm)			\
{									\
	name##_SPLAY(head, elm);					\
	if (SPLAY_RIGHT(elm, field) != NULL) {				\
		elm = SPLAY_RIGHT(elm, field);				\
		while (SPLAY_LEFT(elm, field) != NULL) {		\
			elm = SPLAY_LEFT(elm, field);			\
		}							\
	} else								\
		elm = NULL;						\
	return (elm);							\
}									\
									\
static __inline struct type *						\
name##_SPLAY_MIN_MAX(struct name *head, int val)			\
{									\
	name##_SPLAY_MINMAX(head, val);					\
	return (SPLAY_ROOT(head));					\
}

/* Main splay operation.
* Moves node close to the key of elm to top
*/
#define SPLAY_GENERATE(name, type, field, cmp)				\
struct type *								\
name##_SPLAY_INSERT(struct name *head, struct type *elm)		\
{									\
    if (SPLAY_EMPTY(head)) {						\
	    SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL;	\
    } else {								\
	    int __comp;							\
	    name##_SPLAY(head, elm);					\
	    __comp = (cmp)(elm, (head)->sph_root);			\
	    if(__comp < 0) {						\
		    SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
		    SPLAY_RIGHT(elm, field) = (head)->sph_root;		\
		    SPLAY_LEFT((head)->sph_root, field) = NULL;		\
	    } else if (__comp > 0) {					\
		    SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
		    SPLAY_LEFT(elm, field) = (head)->sph_root;		\
		    SPLAY_RIGHT((head)->sph_root, field) = NULL;	\
	    } else							\
		    return ((head)->sph_root);				\
    }									\
    (head)->sph_root = (elm);						\
    return (NULL);							\
}									\
									\
struct type *								\
name##_SPLAY_REMOVE(struct name *head, struct type *elm)		\
{									\
	struct type *__tmp;						\
	if (SPLAY_EMPTY(head))						\
		return (NULL);						\
	name##_SPLAY(head, elm);					\
	if ((cmp)(elm, (head)->sph_root) == 0) {			\
		if (SPLAY_LEFT((head)->sph_root, field) == NULL) {	\
			(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
		} else {						\
			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
			(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
			name##_SPLAY(head, elm);			\
			SPLAY_RIGHT((head)->sph_root, field) = __tmp;	\
		}							\
		return (elm);						\
	}								\
	return (NULL);							\
}									\
									\
void									\
name##_SPLAY(struct name *head, struct type *elm)			\
{									\
	struct type __node, *__left, *__right, *__tmp;			\
	int __comp;							\
\
	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
	__left = __right = &__node;					\
\
	while ((__comp = (cmp)(elm, (head)->sph_root))) {		\
		if (__comp < 0) {					\
			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
			if (__tmp == NULL)				\
				break;					\
			if ((cmp)(elm, __tmp) < 0){			\
				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
					break;				\
			}						\
			SPLAY_LINKLEFT(head, __right, field);		\
		} else if (__comp > 0) {				\
			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
			if (__tmp == NULL)				\
				break;					\
			if ((cmp)(elm, __tmp) > 0){			\
				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
					break;				\
			}						\
			SPLAY_LINKRIGHT(head, __left, field);		\
		}							\
	}								\
	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
}									\
									\
/* Splay with either the minimum or the maximum element			\
 * Used to find minimum or maximum element in tree.			\
 */									\
void name##_SPLAY_MINMAX(struct name *head, int __comp) \
{									\
	struct type __node, *__left, *__right, *__tmp;			\
\
	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
	__left = __right = &__node;					\
\
	while (1) {							\
		if (__comp < 0) {					\
			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
			if (__tmp == NULL)				\
				break;					\
			if (__comp < 0){				\
				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
					break;				\
			}						\
			SPLAY_LINKLEFT(head, __right, field);		\
		} else if (__comp > 0) {				\
			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
			if (__tmp == NULL)				\
				break;					\
			if (__comp > 0) {				\
				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
					break;				\
			}						\
			SPLAY_LINKRIGHT(head, __left, field);		\
		}							\
	}								\
	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
}

#define SPLAY_NEGINF	-1
#define SPLAY_INF	1

#define SPLAY_INSERT(name, x, y)	name##_SPLAY_INSERT(x, y)
#define SPLAY_REMOVE(name, x, y)	name##_SPLAY_REMOVE(x, y)
#define SPLAY_FIND(name, x, y)		name##_SPLAY_FIND(x, y)
#define SPLAY_NEXT(name, x, y)		name##_SPLAY_NEXT(x, y)
#define SPLAY_MIN(name, x)		(SPLAY_EMPTY(x) ? NULL	\
					: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
#define SPLAY_MAX(name, x)		(SPLAY_EMPTY(x) ? NULL	\
					: name##_SPLAY_MIN_MAX(x, SPLAY_INF))

#define SPLAY_FOREACH(x, name, head)					\
	for ((x) = SPLAY_MIN(name, head);				\
	     (x) != NULL;						\
	     (x) = SPLAY_NEXT(name, head, x))

/* Macros that define a red-back tree */
#define RB_HEAD(name, keytype, Type)						\
struct name {								\
	UINT_PTR base;\
	struct Type *rbh_root; /* root of the tree */			\
}

#define RB_INITIALIZER(mem, root)						\
	{ (UINT_PTR)(mem), NULL }

#define RB_INIT(name, Type, mem, root) do {						\
	(*((struct name*)(root))).base = (UINT_PTR)(mem);\
	(*((struct name*)(root))).rbh_root = NULL;					\
} while (0)

#define RB_BLACK	0
#define RB_RED		1
#define RB_ENTRY(Type)							\
struct {								\
	struct Type *rbe_left;		/* left element */		\
	struct Type *rbe_right;		/* right element */		\
	struct Type *rbe_parent;	/* parent element */		\
	int rbe_color;			/* node color */		\
	int rbe_size;			/* subtree size*/\
}

#define RB_LEFT_GET(Type, elm, field, head)					((elm)->field.rbe_left  != NULL ? (struct Type*)((char*)((elm)->field.rbe_left) + (head)->base) : NULL)
#define RB_LEFT_SET(Type, elm, field, head, left)			((elm)->field.rbe_left = (left != NULL )? (struct Type*)((char*)left - (head)->base): NULL)
#define RB_RIGHT_GET(Type, elm, field, head)				((elm)->field.rbe_right !=NULL ?(struct Type*)((char*)((elm)->field.rbe_right) + (head)->base): NULL)
#define RB_RIGHT_SET(Type, elm, field, head, right)		((elm)->field.rbe_right = (right != NULL )? (struct Type*)((char*)right - (head)->base): NULL)
#define RB_PARENT_GET(Type, elm, field, head)			((elm)->field.rbe_parent  != NULL ? (struct Type*)((char*)((elm)->field.rbe_parent) + (head)->base): NULL)
#define RB_PARENT_SET(Type, elm, field, head, parent)	((elm)->field.rbe_parent = (parent !=NULL )? (struct Type*)((char*)parent - (head)->base): NULL)

#define RB_COLOR(elm, field)					(elm)->field.rbe_color

#define RB_ROOT_GET(Type, head)			((head)->rbh_root != NULL ? (struct Type*)((char*)((head)->rbh_root) + (head)->base): NULL)
#define RB_ROOT_SET(Type, head, elm)	((head)->rbh_root = (elm != NULL) ? (struct Type*)((char*)elm - (head)->base): NULL)
#define RB_EMPTY(Type, head)			(RB_ROOT_GET(Type, head) == NULL)


#define RB_SET(Type, elm, parent, field, head) do {			\
	RB_PARENT_SET(Type, elm, field, head, parent);				\
	RB_LEFT_SET(Type, elm, field, head, NULL);		\
	RB_RIGHT_SET(Type, elm, field, head, NULL);		\
	RB_COLOR(elm, field) = RB_RED;				\
	(elm)->field.rbe_size = 1;\
} while (0)

#define RB_SET_BLACKRED(black, red, field) do {				\
	RB_COLOR(black, field) = RB_BLACK;				\
	RB_COLOR(red, field) = RB_RED;					\
} while (0)

#ifndef RB_AUGMENT
#define RB_AUGMENT(Type, elm, field, head) do{\
if(elm != NULL) \
{int left_size = RB_LEFT_GET(Type, elm, field, head) == NULL ? 0: (RB_LEFT_GET(Type, elm, field, head)->field).rbe_size;\
int right_size = RB_RIGHT_GET(Type, elm, field, head) == NULL ? 0: (RB_RIGHT_GET(Type, elm, field, head)->field).rbe_size;\
((elm)->field).rbe_size = left_size + right_size + 1;}}while(0)
#endif

#define RB_ROTATE_LEFT(head, Type, elm, tmp, field) do {			\
	(tmp) = RB_RIGHT_GET(Type, elm, field, head);					\
	RB_RIGHT_SET(Type, elm, field, head, RB_LEFT_GET(Type, tmp, field, head));\
	if (NULL != RB_RIGHT_GET(Type, elm, field, head)) {		\
		RB_PARENT_SET(Type, RB_LEFT_GET(Type, tmp, field, head), field, head, elm);		\
	}								\
	RB_AUGMENT(Type, elm, field, head);						\
	RB_PARENT_SET(Type, tmp, field, head, RB_PARENT_GET(Type, elm, field, head));	\
	if (NULL != RB_PARENT_GET(Type, tmp, field, head)) {		\
		if ((elm) == RB_LEFT_GET(Type, RB_PARENT_GET(Type, elm, field, head), field, head))\
		{																	   \
			RB_LEFT_SET(Type, RB_PARENT_GET(Type, elm, field, head), field, head, tmp);		\
		}																\
		else															\
		{																\
			RB_RIGHT_SET(Type, RB_PARENT_GET(Type, elm, field, head), field, head, tmp);	\
		}															\
	} else								\
		RB_ROOT_SET(Type, head, tmp);				\
	RB_LEFT_SET(Type, tmp, field, head, elm);					\
	RB_PARENT_SET(Type, elm, field, head, tmp);					\
	RB_AUGMENT(Type, tmp, field, head);						\
	if ((RB_PARENT_GET(Type, tmp, field, head)))					\
		RB_AUGMENT(Type, RB_PARENT_GET(Type, tmp, field, head), field, head);			\
} while (0)

#define RB_ROTATE_RIGHT(head, Type, elm, tmp, field) do {			\
	(tmp) = RB_LEFT_GET(Type, elm, field, head);					\
	RB_LEFT_SET(Type, elm, field, head, RB_RIGHT_GET(Type, tmp, field, head));\
	if (NULL != RB_LEFT_GET(Type, elm, field, head)) {		\
		RB_PARENT_SET(Type, RB_RIGHT_GET(Type, tmp, field, head), field, head, elm);		\
	}								\
	RB_AUGMENT(Type, elm, field, head);						\
	RB_PARENT_SET(Type, tmp, field, head, RB_PARENT_GET(Type, elm, field, head));\
	if (NULL != RB_PARENT_GET(Type, tmp, field, head)) {		\
		if ((elm) == RB_LEFT_GET(Type, RB_PARENT_GET(Type, elm, field, head), field, head))	\
			RB_LEFT_SET(Type, RB_PARENT_GET(Type, elm, field, head), field, head, tmp);	\
		else							\
			RB_RIGHT_SET(Type, RB_PARENT_GET(Type, elm, field, head), field, head, tmp);	\
	} else								\
		RB_ROOT_SET(Type, head, tmp);				\
	RB_RIGHT_SET(Type, tmp, field, head, elm);					\
	RB_PARENT_SET(Type, elm, field, head, tmp);					\
	RB_AUGMENT(Type, tmp, field, head);						\
	if ((RB_PARENT_GET(Type, tmp, field, head)))					\
		RB_AUGMENT(Type, RB_PARENT_GET(Type, tmp, field, head), field, head);			\
} while (0)

/* Generates prototypes and inline functions */
#define RB_PROTOTYPE(name, keytype, Type, field, cmp)				\
void name##_RB_INSERT_COLOR(struct name *, struct Type *);	\
void name##_RB_REMOVE_COLOR(struct name *, struct Type *, struct Type *);\
struct Type *name##_RB_REMOVE(struct name *, struct Type *);		\
struct Type *name##_RB_INSERT(struct name *, struct Type *);		\
struct Type *name##_RB_FIND(struct name *, struct keytype *);		\
struct Type *name##_RB_NEXT(struct name *, struct Type *);				\
struct Type *name##_RB_MINMAX(struct name *, int);			\
									\
/* Main rb operation.
* Moves node close to the key of elm to top
*/
#define RB_GENERATE(name, keytype, Type, field, cmp)				\
void									\
name##_RB_INSERT_COLOR(struct name *head, struct Type *elm)		\
{									\
	struct Type *parent, *gparent, *tmp;				\
	while ((parent = RB_PARENT_GET(Type, elm, field, head)) &&			\
	    RB_COLOR(parent, field) == RB_RED) {			\
		gparent = RB_PARENT_GET(Type, parent, field, head);			\
		if (parent == RB_LEFT_GET(Type, gparent, field, head)) {		\
			tmp = RB_RIGHT_GET(Type, gparent, field, head);			\
			if (tmp && RB_COLOR(tmp, field) == RB_RED) {	\
				RB_COLOR(tmp, field) = RB_BLACK;	\
				RB_SET_BLACKRED(parent, gparent, field);\
				elm = gparent;				\
				continue;				\
			}						\
			if (RB_RIGHT_GET(Type, parent, field, head) == elm) {		\
				RB_ROTATE_LEFT(head, Type, parent, tmp, field);\
				tmp = parent;				\
				parent = elm;				\
				elm = tmp;					\
			}					\
			RB_SET_BLACKRED(parent, gparent, field);	\
			RB_ROTATE_RIGHT(head, Type, gparent, tmp, field);	\
		}else {						\
			tmp = RB_LEFT_GET(Type, gparent, field, head);			\
			if (tmp && RB_COLOR(tmp, field) == RB_RED) {	\
				RB_COLOR(tmp, field) = RB_BLACK;	\
				RB_SET_BLACKRED(parent, gparent, field);\
				elm = gparent;				\
				continue;				\
			}						\
			if (RB_LEFT_GET(Type, parent, field, head) == elm) {		\
				RB_ROTATE_RIGHT(head, Type, parent, tmp, field);\
				tmp = parent;				\
				parent = elm;				\
				elm = tmp;				\
			}						\
			RB_SET_BLACKRED(parent, gparent, field);	\
			RB_ROTATE_LEFT(head, Type, gparent, tmp, field);	\
		}							\
	}								\
	tmp = 	RB_ROOT_GET(Type, head);\
	if(tmp != NULL) \
		RB_COLOR(tmp, field) = RB_BLACK;			\
}	\
void	name##_RB_REMOVE_COLOR(struct name *head, struct Type *parent, struct Type *elm) \
{									\
	struct Type *tmp, *root;						\
	while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) &&	\
	    elm != RB_ROOT_GET(Type, head)) {					\
		if (RB_LEFT_GET(Type, parent, field, head) == elm) {			\
			tmp = RB_RIGHT_GET(Type, parent, field, head);			\
			if (RB_COLOR(tmp, field) == RB_RED) {		\
				RB_SET_BLACKRED(tmp, parent, field);	\
				RB_ROTATE_LEFT(head, Type, parent, tmp, field);\
				tmp = RB_RIGHT_GET(Type, parent, field, head);		\
			}						\
			if ((RB_LEFT_GET(Type, tmp, field, head) == NULL 		\
			    ||RB_COLOR(RB_LEFT_GET(Type, tmp, field, head), field) == RB_BLACK) \
				&& (RB_RIGHT_GET(Type, tmp, field, head) == NULL ||		\
			    RB_COLOR(RB_RIGHT_GET(Type, tmp, field, head), field) == RB_BLACK)) {\
				RB_COLOR(tmp, field) = RB_RED;		\
				elm = parent;				\
				parent = RB_PARENT_GET(Type, elm, field, head);		\
			} \
			else {					\
				if (RB_RIGHT_GET(Type, tmp, field, head) == NULL ||	\
				    RB_COLOR(RB_RIGHT_GET(Type, tmp, field, head), field) == RB_BLACK) {\
					struct Type *oleft;		\
					if ((oleft = RB_LEFT_GET(Type, tmp, field, head)))\
						RB_COLOR(oleft, field) = RB_BLACK;\
					RB_COLOR(tmp, field) = RB_RED;	\
					RB_ROTATE_RIGHT(head, Type, tmp, oleft, field);\
					tmp = RB_RIGHT_GET(Type, parent, field, head);	\
				}					\
				RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
				RB_COLOR(parent, field) = RB_BLACK;	\
				if (RB_RIGHT_GET(Type, tmp, field, head))		\
					RB_COLOR(RB_RIGHT_GET(Type, tmp, field, head), field) = RB_BLACK;\
				RB_ROTATE_LEFT(head, Type, parent, tmp, field);\
				elm = RB_ROOT_GET(Type, head);			\
				break;					\
			}						\
		} \
		else {						\
			tmp = RB_LEFT_GET(Type, parent, field, head);			\
			if (RB_COLOR(tmp, field) == RB_RED) {		\
				RB_SET_BLACKRED(tmp, parent, field);	\
				RB_ROTATE_RIGHT(head, Type, parent, tmp, field);\
				tmp = RB_LEFT_GET(Type, parent, field, head);		\
			}						\
			if ((RB_LEFT_GET(Type, tmp, field, head) == NULL ||		\
			    RB_COLOR(RB_LEFT_GET(Type, tmp, field, head), field) == RB_BLACK) &&\
			    (RB_RIGHT_GET(Type, tmp, field, head) == NULL ||		\
			    RB_COLOR(RB_RIGHT_GET(Type, tmp, field, head), field) == RB_BLACK)) {\
				RB_COLOR(tmp, field) = RB_RED;		\
				elm = parent;				\
				parent = RB_PARENT_GET(Type, elm, field, head);		\
			}else {					\
				if (RB_LEFT_GET(Type, tmp, field, head) == NULL ||	\
				    RB_COLOR(RB_LEFT_GET(Type, tmp, field, head), field) == RB_BLACK) {\
					struct Type *oright;		\
					if ((oright = RB_RIGHT_GET(Type, tmp, field, head)))\
						RB_COLOR(oright, field) = RB_BLACK;\
					RB_COLOR(tmp, field) = RB_RED;	\
					RB_ROTATE_LEFT(head, Type, tmp, oright, field);\
					tmp = RB_LEFT_GET(Type, parent, field, head);	\
				}					\
				RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
				RB_COLOR(parent, field) = RB_BLACK;	\
				if (RB_LEFT_GET(Type, tmp, field, head))		\
					RB_COLOR(RB_LEFT_GET(Type, tmp, field, head), field) = RB_BLACK;\
				RB_ROTATE_RIGHT(head, Type, parent, tmp, field);\
				elm = RB_ROOT_GET(Type, head);			\
				break;				\
			}						\
		}							\
	}								\
	if (elm)							\
		RB_COLOR(elm, field) = RB_BLACK;			\
}\
struct Type *								\
name##_RB_REMOVE(struct name *head, struct Type *elm)			\
{									\
	struct Type *child, *parent, *old = elm, *root;			\
	int color;							\
	if (RB_LEFT_GET(Type, elm, field, head) == NULL)				\
		child = RB_RIGHT_GET(Type, elm, field, head);				\
	else if (RB_RIGHT_GET(Type, elm, field, head) == NULL)				\
		child = RB_LEFT_GET(Type, elm, field, head);				\
	else {								\
		struct Type *left;					\
		elm = RB_RIGHT_GET(Type, elm, field, head);				\
		while ((left = RB_LEFT_GET(Type, elm, field, head)))			\
			elm = left;					\
		child = RB_RIGHT_GET(Type, elm, field, head);				\
		parent = RB_PARENT_GET(Type, elm, field, head);				\
		color = RB_COLOR(elm, field);				\
		if (child)						\
			RB_PARENT_SET(Type, child, field, head, parent);		\
		if (parent) {						\
			if (RB_LEFT_GET(Type, parent, field, head) == elm)		\
				RB_LEFT_SET(Type, parent, field, head, child);		\
			else						\
				RB_RIGHT_SET(Type, parent, field, head, child);	\
			RB_AUGMENT(Type, parent, field, head);				\
		}											\
		else										\
		{											\
			RB_ROOT_SET(Type, head, child);			\
		}									\
		if (RB_PARENT_GET(Type, elm, field, head) == old)			\
			parent = elm;					\
		(elm)->field = (old)->field;				\
		if (RB_PARENT_GET(Type, old, field, head)) {				\
			if (RB_LEFT_GET(Type, RB_PARENT_GET(Type, old, field, head), field, head) == old)\
				RB_LEFT_SET(Type, RB_PARENT_GET(Type, old, field, head), field, head, elm);\
			else						\
				RB_RIGHT_SET(Type, RB_PARENT_GET(Type, old, field, head), field, head, elm);\
			RB_AUGMENT(Type, RB_PARENT_GET(Type, old, field, head), field, head);		\
		} else							\
			RB_ROOT_SET(Type, head, elm);				\
		RB_PARENT_SET(Type, RB_LEFT_GET(Type, old, field, head), field, head, elm);		\
		if (RB_RIGHT_GET(Type, old, field, head))				\
			RB_PARENT_SET(Type, RB_RIGHT_GET(Type, old, field, head), field, head, elm);	\
		if (parent) {						\
			left = parent;					\
			parent->field.rbe_size -= 1;\
			do {						\
				RB_AUGMENT(Type, left, field, head);			\
			} while ((left = RB_PARENT_GET(Type, left, field, head)));	\
		}							\
		goto color;						\
	}								\
	parent = RB_PARENT_GET(Type, elm, field, head);					\
	color = RB_COLOR(elm, field);					\
	if (child)							\
		RB_PARENT_SET(Type, child, field, head, parent);			\
	if (parent) {							\
		parent->field.rbe_size -= 1;\
		if (RB_LEFT_GET(Type, parent, field, head) == elm)			\
			RB_LEFT_SET(Type, parent, field, head, child);			\
		else							\
			RB_RIGHT_SET(Type, parent, field, head, child);		\
		RB_AUGMENT(Type, parent, field, head);					\
	} else								\
		RB_ROOT_SET(Type, head, child);					\
color:									\
	if (color == RB_BLACK)						\
		name##_RB_REMOVE_COLOR(head, parent, child);		\
	return (old);							\
}									\
									\
/* Inserts a node into the RB tree */					\
struct Type *								\
name##_RB_INSERT(struct name *head, struct Type *elm)			\
{									\
	struct Type *tmp;						\
	struct Type *parent = NULL;					\
	int comp = 0;							\
	tmp = RB_ROOT_GET(Type, head);						\
	while (tmp) {							\
		parent = tmp;						\
		comp = (cmp)((struct keytype*)(elm), (struct keytype*)(parent));				\
		if (comp < 0)						\
			tmp = RB_LEFT_GET(Type, tmp, field, head);			\
		else if (comp > 0)					\
			tmp = RB_RIGHT_GET(Type, tmp, field, head);			\
		else							\
			return (tmp);					\
		if (tmp)		\
			(parent)->field.rbe_size += 1; \
	}								\
	RB_SET(Type, elm, parent, field, head);				\
	if (parent != NULL) {						\
		if (comp < 0)						\
			RB_LEFT_SET(Type, parent, field, head, elm);			\
		else							\
			RB_RIGHT_SET(Type, parent, field, head, elm);			\
		RB_AUGMENT(Type, parent, field, head);					\
	} else								\
		RB_ROOT_SET(Type, head, elm);					\
	name##_RB_INSERT_COLOR(head, elm);				\
	return (NULL);							\
}									\
									\
/* Finds the node with the same key as elm */				\
struct Type *								\
name##_RB_FIND(struct name *head, struct keytype *elm)			\
{									\
	struct Type *tmp = RB_ROOT_GET(Type, head);				\
	int comp;							\
	while (tmp) {							\
		comp = cmp(elm, (struct keytype*)(tmp));					\
		if (comp < 0)						\
			tmp = RB_LEFT_GET(Type, tmp, field, head);			\
		else if (comp > 0)					\
			tmp = RB_RIGHT_GET(Type, tmp, field, head);			\
		else							\
			return (tmp);					\
	}								\
	return (NULL);							\
}									\
									\
struct Type *								\
name##_RB_NEXT(struct name* head, struct Type *elm)					\
{									\
	if (RB_RIGHT_GET(Type, elm, field, head)) {					\
		elm = RB_RIGHT_GET(Type, elm, field, head);				\
		while (RB_LEFT_GET(Type, elm, field, head))				\
			elm = RB_LEFT_GET(Type, elm, field, head);			\
	} else {							\
		if (RB_PARENT_GET(Type, elm, field, head) &&				\
		    (elm == RB_LEFT_GET(Type, RB_PARENT_GET(Type, elm, field, head), field, head)))	\
			elm = RB_PARENT_GET(Type, elm, field, head);			\
		else {							\
			while (RB_PARENT_GET(Type, elm, field, head) &&			\
			    (elm == RB_RIGHT_GET(Type, RB_PARENT_GET(Type, elm, field, head), field, head)))\
				elm = RB_PARENT_GET(Type, elm, field, head);		\
			elm = RB_PARENT_GET(Type, elm, field, head);			\
		}							\
	}								\
	return (elm);							\
}									\
									\
struct Type *								\
name##_RB_MINMAX(struct name *head, int val)				\
{									\
	struct Type *tmp = RB_ROOT_GET(Type, head);				\
	struct Type *parent = NULL;					\
	while (tmp) {							\
		parent = tmp;						\
		if (val < 0)						\
			tmp = RB_LEFT_GET(Type, tmp, field, head);			\
		else							\
			tmp = RB_RIGHT_GET(Type, tmp, field, head);			\
	}								\
	return (parent);						\
}

#define RB_NEGINF	-1
#define RB_INF	1

#define RB_INSERT(name, head, elm)	name##_RB_INSERT(head, elm)
#define RB_REMOVE(name, head, elm)	name##_RB_REMOVE(head, elm)
#define RB_FIND(name, head, key)	name##_RB_FIND(head, key)
#define RB_NEXT(name, head, elm)	name##_RB_NEXT(head, elm)
#define RB_MIN(name, head)		name##_RB_MINMAX(head, RB_NEGINF)
#define RB_MAX(name, head)		name##_RB_MINMAX(head, RB_INF)

#define RB_FOREACH(x, name, head)					\
	for ((x) = RB_MIN(name, head);					\
	     (x) != NULL;						\
	     (x) = name##_RB_NEXT(head, x))

#endif	/* _SYS_TREE_H_ */

使用起来还是很方便:

复制代码
// main.cpp
#include <iostream>
#include <chrono>

#if defined(_WIN64)
typedef __int64 INT_PTR, * PINT_PTR;
typedef unsigned __int64 UINT_PTR, * PUINT_PTR;

typedef __int64 LONG_PTR, * PLONG_PTR;
typedef unsigned __int64 ULONG_PTR, * PULONG_PTR;

#define __int3264   __int64
#else

typedef _W64 int INT_PTR, * PINT_PTR;
typedef _W64 unsigned int UINT_PTR, * PUINT_PTR;

typedef _W64 long LONG_PTR, * PLONG_PTR;
typedef _W64 unsigned long ULONG_PTR, * PULONG_PTR;

#define __int3264   __int32

#endif

#include "tree.h"

struct RBTreeKey
{
	int key;
};

struct RBTreeNode
{
	RBTreeKey id;
	char value;
	RB_ENTRY(RBTreeNode) entry;
};

int RBTreeCmp(RBTreeKey* a, RBTreeKey* b)
{
	if (a->key < b->key) return -1;
	if (a->key > b->key) return 1;
	return 0;
}

RB_HEAD(MyTree, RBTreeKey, RBTreeNode);
RB_PROTOTYPE(MyTree, RBTreeKey, RBTreeNode, entry, RBTreeCmp);
RB_GENERATE(MyTree, RBTreeKey, RBTreeNode, entry, RBTreeCmp);

void MyTree_Range_Query(struct MyTree* tree, int min_key, int max_key, RBTreeNode* parent=NULL) 
{
	if (RB_EMPTY(RBTreeNode, tree) || min_key > max_key) 
		return;
	// 手动栈实现(避免递归深度限制)
	struct RBTreeNode* stack[64]; // 红黑树高度最多 2*log2(n),64足够大
	int stack_size = 0;
	struct RBTreeNode* current = parent == NULL ? RB_ROOT_GET(RBTreeNode,tree) : parent;
	int count = 0;
	// 中序遍历的迭代版本
	while (current != NULL || stack_size > 0) {
		// 遍历到最左节点
		while (current != NULL) {
			stack[stack_size++] = current;

			// 优化:如果当前节点已经小于min_key,可以跳过左子树的部分遍历
			if (current->id.key < min_key) {
				// 左子树的所有节点都会更小,直接跳过
				current = NULL;
			}
			else {
				current = RB_LEFT_GET(RBTreeNode,current, entry, tree);
			}
		}

		if (stack_size > 0) {
			current = stack[--stack_size];

			// 检查当前节点是否在范围内
			if (current->id.key >= min_key) {
				if (current->id.key <= max_key) {
					// 在范围内,处理节点
					std::cout << "Key: " << current->id.key << ", Value:" << current->value << std::endl;
					count++;
				}
				else {
					// 超过max_key,可以提前终止
					break;
				}
			}

			// 决定是否继续遍历右子树
			if (current->id.key < max_key) {
				current = RB_RIGHT_GET(RBTreeNode,current, entry,tree);
			}
			else {
				current = NULL;  // 右子树的所有节点都会更大,跳过
			}
		}
	}
	std::cout << "Find node: count= " << count << std::endl;
}


int main()
{
	std::cout << "Hello RbTree!\n";
	
	char buffer[1024] = { 0 };
	struct MyTree* tree = (struct MyTree*)(buffer);
	RB_INIT(MyTree, RBTreeNode, buffer, tree);
	const int dataOffset = sizeof(MyTree);// offset must >= 1, to help internal condition check.
	RBTreeNode* n1 = new(buffer + dataOffset)RBTreeNode();
	RBTreeNode* n2 = new(buffer + dataOffset + 1 * sizeof(RBTreeNode))RBTreeNode();
	RBTreeNode* n3 = new(buffer + dataOffset + 2 * sizeof(RBTreeNode))RBTreeNode();
	RBTreeNode* n4 = new(buffer + dataOffset + 3 * sizeof(RBTreeNode))RBTreeNode();
	RBTreeNode* n5 = new(buffer + dataOffset + 4 * sizeof(RBTreeNode))RBTreeNode();
	RBTreeNode* n6 = new(buffer + dataOffset + 5 * sizeof(RBTreeNode))RBTreeNode();
	n1->id.key = 10, n2->id.key = 5, n3->id.key = 15, n4->id.key = 1, n5->id.key = 13, n6->id.key = 25;
	n1->value = 1, n2->value = 2, n3->value = 3, n4->value = 4, n5->value = 5, n6->value = 6;
	RB_INSERT(MyTree, tree, n1);
	RB_INSERT(MyTree, tree, n2);
	RB_INSERT(MyTree, tree, n3);
	RB_INSERT(MyTree, tree, n4);
	RB_INSERT(MyTree, tree, n5);
	RB_INSERT(MyTree, tree, n6);
	RBTreeKey find = { 5 };
	int dataLen = dataOffset + 6 * sizeof(RBTreeNode);
	// save data to disk
	FILE *fp;
	fopen_s(&fp, "./tree.bin", "wb");
	fwrite(buffer,1, dataLen, fp);
	fclose(fp);

	//load data from disk
	fopen_s(&fp, "./tree.bin", "rb");
	char rbuf[1024] = { 0 };
	fread(rbuf,1, dataLen,fp);
	struct MyTree* dataTree = (struct MyTree*)(rbuf);
	fclose(fp);
	//single query data
	RBTreeKey find = { 5 };
	RBTreeNode* found = RB_FIND(MyTree, dataTree, &find);

	//range query data
	MyTree_Range_Query(dataTree, 0, 30);

	//traverse data
	RBTreeNode* node = nullptr;
	RB_FOREACH(node, MyTree, dataTree)
	{
		std::cout << "Node Key: " << node->id.key << std::endl;
	}
	// remove data
	RB_REMOVE(MyTree, dataTree, found);

	RB_FOREACH(node, MyTree, dataTree)
	{
		std::cout << "Node Key: " << node->id.key << std::endl;
	}
	std::cout << "Hello World!\n";
	return 0;
}
相关推荐
(●—●)橘子……3 小时前
记力扣2271.毯子覆盖的最多白色砖块数 练习理解
数据结构·笔记·python·学习·算法·leetcode
做运维的阿瑞3 小时前
Python 面向对象编程深度指南
开发语言·数据结构·后端·python
new coder5 小时前
[算法练习]第三天:定长滑动窗口
数据结构·算法
晨非辰5 小时前
《从数组到动态顺序表:数据结构与算法如何优化内存管理?》
c语言·数据结构·经验分享·笔记·其他·算法
筱砚.6 小时前
【数据结构——十字链表】
网络·数据结构·链表
坚持编程的菜鸟7 小时前
LeetCode每日一题——重复的子字符串
数据结构·算法·leetcode
williamdsy12 小时前
【MoonBit初探】:从一个“陷阱”到深入理解数据结构*
数据结构·map·moonbit
无敌最俊朗@16 小时前
C++ 序列容器深度解析:vector、deque 与 list
开发语言·数据结构·数据库·c++·qt·list
Da Da 泓16 小时前
LinkedList模拟实现
java·开发语言·数据结构·学习·算法