HBase全量+增量迁移import/export方式

本文是用自带的hbase import/export方法,由于原端不开放hdfs数据,并且因为底层存储不能打快照,目标端也不开放,所以只能通过这种方式。(这种方式比较耗性能)

建议从主库,搞一个备份库,再用这种导出备份库的数据

前提准备:

1.原端hbase集群,并且能够操作机访问

2.目标端hbase集群,并且能够操作机访问

3.操作机,一台ecs

模拟原端数据

bash 复制代码
create_namespace 'test'
//创建一个名称为clark:test,列族名为cf的表
create 'test:user', 'cf'
// 插入数据。put 命名空间:表名,行键rowkey,列簇:字段名,值
put 'test:user','001','cf:name','clark'
put 'test:user','001','cf:age','28'
put 'test:user','002','cf:name','alice'
put 'test:user','002','cf:name','25'
//看一下数据
scan 'test:user'

全量迁移

1.看原表,表结构

bash 复制代码
./hbase shell
list
#查看有哪些表
describe 'test:user'

2.目标端建表

bash 复制代码
./hbase shell
#先创建命名空间
create_namespace 'test'
#创建表,不要有换行,如果有多行压缩成一行,或者末尾加\
create 'test:user',{NAME => 'cf', VERSIONS => '1', EVICT_BLOCKS_ON_CLOSE => 'false',NEW_VERSION_BEHAVIOR => 'false', KEEP_DELETED_CELLS => 'FALSE', CACHE_DATA_ON_WRITE=> 'false', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', MIN_VERSIONS =>'0', REPLICATION_SCOPE => '0', BLOOMFILTER => 'ROW',CACHE_INDEX_ON_WRITE => 'false', IN_MEMORY => 'false', CACHE_BLOOMS_ON_WRITE =>'false', PREFETCH_BLOCKS_ON_OPEN => 'false', COMPRESSION => 'NONE', BLOCKCACHE =>'true', BLOCKSIZE => '65536', METADATA => {'STORAGE_POLICY' => 'DEFAULT','DFS_REPLICATION' => '2', 'CHS_PROMOTE_ON_MAJOR' => 'true'}} 

3.原端导出数据

bash 复制代码
./hbase org.apache.hadoop.hbase.mapreduce.Export test:user /tmp/hbase-export/test
ll /tmp/hbase-export/test

date +%s%3N

记录导出当前时间戳:1759118035736

4.目标端导入数据

bash 复制代码
./hbase org.apache.hadoop.hbase.mapreduce.Import test:user /tmp/hbase-export/test/

增量迁移

1. 在原端插入多条数据

bash 复制代码
put 'test:user','003','cf:name','abc'
put 'test:user','001','cf:age','29'

2. 原端导出数据

先scan,查看原端的时间格式,发现是时间戳。

bash 复制代码
./hbase -Dmapreduce.job.maps=10 org.apache.hadoop.hbase.mapreduce.Export test:user /tmp/incremental-export 1 1759118035736 1759131808806

这4个分别代表,命名空间:表名 导出最近版本(1代表的是最新的版本)开始时间戳 结束时间戳(这个可以通过scan看到数据上的时间戳)

3. 目标端导入数据

目标端导入

bash 复制代码
./hbase org.apache.hadoop.hbase.mapreduce.Import test:user /tmp/incremental-export

数据校验

先count对比行数,再抽样比对(由于版本不同并且没有开放hdfs数据,所以不能用md5sum)

bash 复制代码
# 小表直接计数(注意:大表耗时较长)
count 'namespace:table_name'

# 大表推荐用MapReduce(效率更高)
hbase org.apache.hadoop.hbase.mapreduce.RowCounter 'namespace:table_name'
相关推荐
互联网科技看点11 小时前
孕期科学补铁,保障母婴健康-仁合益康蛋白琥珀酸铁口服溶液成为产妇优选方案
大数据
一灰灰blog11 小时前
Spring AI中的多轮对话艺术:让大模型主动提问获取明确需求
数据库·人工智能·spring
Dxy123931021611 小时前
深度解析 Elasticsearch:从倒排索引到 DSL 查询的实战突围
大数据·elasticsearch·搜索引擎
YongCheng_Liang11 小时前
零基础学大数据:大数据基础与前置技术夯实
大数据·big data
AC赳赳老秦11 小时前
2026国产算力新周期:DeepSeek实战适配英伟达H200,引领大模型训练效率跃升
大数据·前端·人工智能·算法·tidb·memcache·deepseek
鹏说大数据11 小时前
Spark 和 Hive 的关系与区别
大数据·hive·spark
B站计算机毕业设计超人11 小时前
计算机毕业设计Hadoop+Spark+Hive招聘推荐系统 招聘大数据分析 大数据毕业设计(源码+文档+PPT+ 讲解)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
B站计算机毕业设计超人11 小时前
计算机毕业设计hadoop+spark+hive交通拥堵预测 交通流量预测 智慧城市交通大数据 交通客流量分析(源码+LW文档+PPT+讲解视频)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
数据架构师的AI之路11 小时前
深入了解大数据领域Hive的HQL语言特性
大数据·hive·hadoop·ai
Nandeska11 小时前
15、基于MySQL的组复制
数据库·mysql