线性代数(标量与向量+矩阵与张量+矩阵求导)

标量与向量




python 复制代码
import numpy as np

#定义向量
x = np.array([2,5,8])
print(x)
print(x.shape)

#向量转置
print(x.T)
print(x.t.shape)

y = np.array([1,3,7])
# 向量相乘  [2,15,56]
print(x * y)

# 向量点乘,或者np.dot(x,y)    73
print(x.dot(y))

# python3.5之后用@符号
print(x @ y)
python 复制代码
#计算范数
l0_norm = np.linalg.norm(x,ord=0) #3.0

l1_norm = np.linalg.norm(x,ord=1) # 15.0

l2_norm = np.linalg.norm(x,ord=2) #

矩阵与张量






python 复制代码
import numpy as np

A = np.array([[1,2,3],[4,5,6]])
B = np.array([[1,3,7],[5,0,2]])

print(A)
print(A.shape)

#矩阵与矩阵相乘(对应位置元素相乘,哈达玛积)
print(A * B)

#矩阵乘法
print(A.dot(B))
print(A.dot(B.T))

print(A @ B.T)

# 求逆
C = np.array([[1,2],[3,5]])
C_inv = np.linalg.inv(C)

print(C.dot(C_inv))
print(C_inv.dot(C))
C_inv = np.around(C_inv).astype(int)


# 向量化
print(A.flatten())

# 矩阵内积
print("<A,B> = ",np.sum(A*B))
print("<A,B> = ",np.dot(A.flatten(),B.flatten()))

#克罗内克积
print(np.kron(A,B))





python 复制代码
# 定义张量
tensor = np.array([[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]])
print(tensor)
print(tensor.shape) #两个矩阵,每个矩阵是2*3

矩阵求导






python 复制代码
#计算梯度
f = np.array([1,2,4,7,11,16])
np.gradient(f)
相关推荐
数据牧羊人的成长笔记2 小时前
python爬虫进阶版练习(只说重点,selenium)
开发语言·chrome·python
databook2 小时前
Manim实现渐变填充特效
后端·python·动效
可触的未来,发芽的智生2 小时前
新奇特:神经网络的自洁之道,学会出淤泥而不染
人工智能·python·神经网络·算法·架构
计算机毕设残哥3 小时前
基于Hadoop+Spark的商店购物趋势分析与可视化系统技术实现
大数据·hadoop·python·scrapy·spark·django·dash
FserSuN3 小时前
python模块导入冲突问题笔记
开发语言·python
马诗剑3 小时前
使用 uv 在 Windows 上快速搭建 Python 开发环境
python
ZHOU_WUYI4 小时前
构建实时网络速度监控面板:Python Flask + SSE 技术详解
网络·python·flask
chinesegf5 小时前
conda虚拟环境直接复制依赖包可能会报错
python·conda
开心-开心急了5 小时前
PySide6 打印(QPrinter)文本编辑器(QPlaintextEdit)内容
python·ui·pyqt