PyCharm中搭建PyTorch和YOLOv10开发环境

经典项目参考:https://blog.csdn.net/qq_42589613/article/details/130941899

环境准备(安装Anaconda和PyCharm)、

创建虚拟环境、

安装PyTorch(区分GPU和CPU版本)、

获取YOLOv10源码、

安装项目依赖、

配置PyCharm解释器、

验证环境是否正常工作

一、环境准备(系统级配置)​

  1. ​安装 Anaconda​

2.配置 CUDA 和 cuDNN(GPU用户必做)​

  • 检查显卡驱动兼容性:命令行输入 nvidia-smi,确认 CUDA 版本

官网下载:CUDA

二、创建虚拟环境​

步骤 1: 克隆项目仓库

首先,使用 Git 克隆 YOLOv10 项目仓库到您的本地机器:

bash 复制代码
git clone https://github.com/THU-MIG/yolov10.git
cd yolov10

步骤 2: 创建虚拟环境

建议使用 Conda 创建一个虚拟环境,以避免依赖冲突:

bash 复制代码
# 打开 Anaconda Prompt
conda create -n yolov10 python=3.9  # 创建 Python 3.9 环境
conda activate yolov10              # 激活环境

步骤 3: 安装依赖项

在激活的虚拟环境中,安装项目所需的依赖项:

bash 复制代码
pip install -r requirements.txt
bash

步骤 4: 验证安装

安装完成后,您可以通过运行以下命令来验证安装是否成功:

bash 复制代码
python app.py

📌 注:Python 3.9 是 YOLOv10 的推荐版本

​三、安装 PyTorch(GPU/CPU 版本)​

  • ​GPU 版本​​(需匹配 CUDA 版本):

    bash 复制代码
    # CUDA 11.8 示例
    pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu118
    
    如果安装失败,可以安装其它版本:
    pip install torch==2.7.1+cu118 torchvision==0.18.1+cu118 torchaudio==2.7.1+cu118 --index-url https://download.pytorch.org/whl/cu118
  • ​CPU 版本​​:

    bash 复制代码
    pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1

💡 验证安装:在 Python 终端运行:

复制代码
import torch print(torch.__version__, torch.cuda.is_available()) # 输出 True 表示 GPU 可用

​四、安装 YOLOv10 及依赖​

  1. ​克隆源码​​:

    bash 复制代码
    git clone https://github.com/THU-MIG/yolov10.git
    
    
    git clone https://gitcode.com/GitHub_Trending/yo/yolov10
    
    cd yolov10

    若安装失败,尝试:

bash 复制代码
pip uninstall -y -r requirements.txt  # 卸载冲突包
pip install --upgrade --no-deps -r requirements.txt  # 跳过依赖检查

五、PyCharm 环境配置​

  1. ​打开项目​​:

    PyCharm → Open→ 选择 yolov10项目目录。

  2. ​配置解释器​​:

    • FileSettingsProject: yolov10Python Interpreter

    • 点击 ⚙️ → Add InterpreterConda Environment→ 选择 Existing environment

    • 路径指向:Anaconda3/envs/yolov10/python.exe(Windows)或 ~/anaconda3/envs/yolov10/bin/python(Linux/macOS)。

  3. ​验证路径​​:

    在 PyCharm 终端运行 conda info --envs,确认激活 yolov10环境。


🧪 ​​六、验证环境​

相关推荐
一勺汤3 小时前
YOLO12 改进、魔改|秩增强线性注意力RALA,通过增强 KV 缓冲与输出特征的矩阵秩,增强 YOLO 对小目标、复杂场景目标的识别能力
线性代数·yolo·矩阵·yolov12·yolo12·yolo12改进·小目标
深蓝海拓5 小时前
YOLO v11的学习记录(五) 使用自定义数据从头训练一个实例分割的模型
学习·yolo
Danceful_YJ9 小时前
33.Transformer架构
人工智能·pytorch·深度学习
深度学习lover15 小时前
<数据集>yolo航拍斑马线识别数据集<目标检测>
人工智能·深度学习·yolo·目标检测·计算机视觉·数据集·航拍斑马线识别
Sunhen_Qiletian18 小时前
YOLOv2算法详解(上篇):从经典到进化的目标检测之路
算法·yolo·目标检测
QTreeY12318 小时前
detr目标检测+deepsort/strongsort/bytetrack/botsort算法的多目标跟踪实现
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
创思通信18 小时前
基于K210的人脸识别开锁
人工智能·yolo·人脸识别·k210
Francek Chen1 天前
【自然语言处理】预训练06:子词嵌入
人工智能·pytorch·深度学习·自然语言处理·子词嵌入
QTreeY1231 天前
yolov5/8/9/10/11/12/13+deep-oc-sort算法的目标跟踪实现
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
qunshankeji1 天前
YOLOv8-SOEP-RFPN-MFM水果智能分类与检测模型实现
yolo·分类·数据挖掘