PyTorch:研发阶段的灵活性和创新速度
TensorFlow:生产环境的大规模部署稳定性
FastAPI:高性能API服务和系统集成
LangChain:LLM应用的快速开发和编排
Hugging Face:预训练模型的标准化使用和优化
PyTorch - 深度学习研发与部署
企业应用案例:智能客服对话系统
项目背景:金融企业需要构建能理解用户意图、生成自然回复的客服机器人。
解决问题:
- 复杂的序列到序列建模任务
- 实时推理性能要求
- 模型快速迭代和实验管理
python
import torch
import torch.nn as nn
class CustomerServiceModel(nn.Module):
def __init__(self,vocab_size,hidden_size):
super().__init__()
self.encoder = nn.LSTM(vocab_size,hidden_size,batch_first=True)
self.decoder = nn.LSTM(hidden_size,hidder_size,batch_first=True)
self.classifier = nnlLinear(hidden_size,vocab_size)
def forward(self,input_ids,target_ids=None):
encoder_outputs,(hidden,cell) = self.encoder(input_ids)
#解码器逻辑
outputs,_ = self.decoder(encoder_outputs,(hidden,cell))
return self.classifier(outputs)
#模型部署优化
model = CustomerServiceModel(10000,512)
traced_model = torch.jit.trace(model,example_inputs=torch.randint(0, 1000, (1, 50)))
traced_model.save("customer_service_model.pt")
TensorFlow - 大规模生产环境部署
企业应用案例:电商推荐系统
项目背景:为电商平台构建个性化商品推荐系统,处理亿级用户和商品数据。
解决的问题:
- 超大规模稀疏特征处理
- 分布式训练和推理
- 生产环境模型服务稳定性
python
import tensorflow as tf
from tensorflow.keras.layers import Dense,Embedding,Concatenate
def build_recommendation_model(user_vocab_size,item_vocab_size):
user_input = tf.keras.Input(shape=(1,),name="user_id")
item_input = tf.keras.Input(shape=(1,),name="item_id")
user_embedding = Embedding(user_vocab_size,64)(user_input)
item_embedding = Embedding(item_vocab_size,64)(item_input)
user_vec = tf.squeeze(user_embedding,axis=1)
item_vec = tf.squeeze(item_embedding,axis=1)
concat = Concatenate()([user_vec,item_vec])
output = Dense(1,activation='sigmoid')(concat)
model = tf.keras.Model(inputs=[user_input,item_input],outputs=output)
return model
#使用TFX进行生产流水线
from tfx.components import Trainer
trainer = Trainer(
module_file = os.path.abspath("recommendation_model.py")
examples = transform.outputs['transformed_examples']
schema = schema_gen.outputs['schema'],
train_args = trainer_pb2.TrainArgs(num_steps=10000),
eval_args = trainer_pb2.EvalArgs(num_steps=5000)
)
FastAPI - 高性能模型服务API
企业应用案例:实时欺诈检测系统
项目背景:金融机构需要实时检测交易欺诈行为,要求低延迟、高并发。
解决的问题:
- 微服务架构下的API标准化
- 高并发请求处理
- 自动API文档生成
- 请求验证和序列化
python
from fastapi import FastAPI,HTTPException
from pydantic import BaseModel
import numpy as np
import joblib
app = FastAPI(title="欺诈检测API",version="1.0.0")
class TransactionRequest(BaseModel):
transaction_amount:float
user_age:int
historical_fraud_rate:float
time_since_last_transaction:float
class FraudResponse(BaseModel):
is_fraud:bool
confidence:float
risk_level:str
@app.post("/predict",response_model=FraudResponse)
async def predict_fraud(transaction:TransactionRequest):
try:
#加载预训练模型
model = joblib.load("fraud_detection_model.pkl")
features = np.array(
[[
transaction.transaction_amount,
transaction.user_age,
transaction.historical_fraud_rate,
transaction.time_since_last_transaction
]]
)
prediction = model.predict(features)[0]
probability = model.predict_proba(features)[0][1]
risk_level = "high" if probability > 0.8 else "medium" if probability > 0.5 else "low"
return FraudResponse(
is_fraud = bool(prediction),
confidence=float(probability),
risk_level=risk_level
)
except Exception as e:
raise HTTPException(status_code=500,detail=str(e))
# 启动命令:uvicorn main:app --host 0.0.0.0 --port 8000 --workers 4
LangChain - 大语言模型应用开发
企业应用案例:智能知识库问答系统
项目背景:企业内部知识分散,需要统一的智能问答入口。
解决的问题:
- 多源数据集成(文档、数据库、API)
- 上下文感知的对话管理
- 检索增强生成(RAG)
- 工具调用和外部系统集成
python
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstors import Chroma
from langchain.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import OpenAI
from langchain.agents import initialize_agent,Tool
from langchain.memory import ConversationBufferMemory
class KnowledgeBaseQA:
def __init__(self,model_name="gpt-3.5-turbo"):
#文档加载和预处理
loader = DirectoryLoader('./knowledge_docs', glob="**/*.pdf")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,chunk_overlap=200
)
texts = text_splitter.split_documents(documents)
#向量数据库
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
self.vecotrstore = Chroma.from_documents(texts,embeddings)
#检索链
self.qa_chain = RetrievalQA.from_chain_type(
llm = OpenAI(model_name=model_name,temperature=0),
chain_type="stuff",
retriever=self.vectorstore.as_retriever(),
return_source_documents=True
)
#对话记忆
self.memory = ConversationBufferMemory(memory_key="chat_history")
def query(self,question:str) -> dict:
return self.qa_chain({"query":question})
#企业级使用
kb_qa = KnowledgeBaseQA()
response = kb_qa.query("我们公司的请假政策是什么?")
print(response['result'])
Hugging Face - 预训练模型与应用
企业应用案例:多语言情感分析平台
项目背景:跨国企业需要监控全球社交媒体上的品牌声誉。
解决的问题:
- 多语言文本理解
- 零样本学习和小样本适应
- 模型微调和优化
- 标准化模型部署
python
from transformers import(
AutoTokenizer,
AutoModelForSequenceClassification,
pipeline,
TrainingArgemtns,
Trainer
)
from datasets import Dataset
import pandas as pd
class MultilingualSentimentAnlayzer:
def __init__(self):
self.model_name = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.classifier = pipeline(
"sentiment-analysis",
model=self.model,
tokenizer = self.tokenizer
)
def analyze_batch(self,texts:list,languages:list=None):
"""批量情感分析"""
results = self.classifier(texts)
return [
{
"text":text,
"sentiment":result['label'],
"score":result['score'],
"language":lang if languages else "auto"
}
for text,result,lang in zip(texts,results,lanauages or [])
]
def fine_tune(self,train_data:pd.DataFrame,output:dir:str):
"""微调模型适应特定领域"""
dataset = Dataset.from_pandas(train_data)
def tokenize_function(examples):
return self.tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=128
)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=3,
per_device_train_batch_size=16,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
)
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=tokenized_dataset,
)
trainer.train()
trainer.save_model()
#企业应用
analyzer = MultilingualSentimentAnalyzer()
texts = ["I love this product!", "产品质量太差了", "C'est incroyable!"]
results = analyzer.analyze_batch(texts)
for result in results:
print(f"Text: {result['text']} | Sentiment: {result['sentiment']}")
框架组合实战:智能客服增强系统
python
# 架构整合示例
from fastapi import FastAPI
from langchain.chains import LLMChain
from transformers import pipeline
import torch
import tensorflow as tf
app = FastAPI()
class EnhancedCustomerService:
def __init__(self):
# 意图分类(TensorFlow)
self.intent_classifier = tf.keras.models.load_model('intent_model.h5')
# 情感分析(Hugging Face)
self.sentiment_analyzer = pipeline("sentiment-analysis")
# 对话生成(PyTorch + LangChain)
self.llm_chain = LLMChain(llm=OpenAI(), prompt=prompt_template)
async def process_query(self, user_input: str):
# 多模型协同工作
intent = self.intent_classifier.predict([user_input])
sentiment = self.sentiment_analyzer(user_input)[0]
if intent == "complaint" and sentiment['label'] == "NEGATIVE":
# 紧急情况处理
return await self.handle_urgent_case(user_input)
else:
# 普通问答
return self.llm_chain.run(user_input)